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Abstract

In this thesis we introduce a medium-term forecast model for electricity demand
in the Nordic region utilizing seasonal Numerical Weather Prediction (NWP)
temperature forecasts.

Our demand model is composed of two integral parts. The first part is
a structural demand model, which seeks to model electricity demand, at a
specific target time, by utilizing temperature at the same target time. The
temperature data consist of observations across a grid over the Nordic countries.
By employing a principal component transformation of the temperature grid
we seek to describe the relation between demand and the temperature field as a
whole by a small subset of principal components. We model this relation through
a Generalized Additive Model. The second part is a probabilistic temperature
forecast model utilizing NWP forecasts in principal component space. By
combing the two parts we can form a probabilistic forecast of demand for the
Nordic region. We show that the models employed show great performance
when compared to relevant baseline models.

We also introduce a re-weighting scheme for NWP forecasts in principal
component space. By re-weighing temperature forecasts after how well they
recently have performed, we can ‘update’ the forecast and obtain short-term
improvements in skill at any time point.
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CHAPTER 1

Introduction

Energy use is a hot-button and multifaceted topic with potential relevance for
a wide array of issues including climate change, geopolitics, global supply chain
security, economic inequality, environmental protection and major infrastructure
projects. How much energy people use, or rather how much they want to use,
expressed as energy demand, will have potentially large impacts on energy price,
production and infrastructure (Coninck et al. 2022, Austvik 2019; IEA 2022;
Oswald et al. 2020; Achuo et al. 2022).

This thesis concerns the topic of medium-term electricity demand forecasting.
Specifically, it focuses on how to employ temperature forecasts as features in
an electricity demand forecasting model. Medium-term electricity demand
forecasting has a broad applicability for stakeholders in industry, energy markets,
government, and the broader public.

For energy trading companies, having access to forecasts of future energy
demand is crucial, since demand has a substantial effect on the energy spot price.
Medium-term demand forecasts are also required for companies in electricity
generation and electricity providers, because the planning horizon for both is
typically on the order of weeks or months (Kristiansen 2014).

Improved demand forecasts also have an important role to play with regard
to climate change mitigation, as they may help improve energy efficiency and
reduce energy waste (Coninck et al. 2022; Bala et al. 2022). Transitioning
to zero-emission energy systems further involves the electrification of the car-
fleet and an increasing reliance on renewables, which in turn requires updated
knowledge about when electric energy will be consumed (Olatomiwa et al. 2016;
Orlov et al. 2020). In addition, demand forecasts at this horizon might prove
useful for households to adjust their consumption. Despite these reasons, the
research on medium-term demand forecasting has been given comparatively
little attention relative to both short- and long-term forecasts (Kuster et al.
2017).

In general one can talk about two non-exclusionary approaches to forecast
improvement: 1) finding better data; and 2) finding a better model. The
motivating idea behind this thesis is encapsulated in the question: ‘What is the
next best data?’ In the case of demand forecasting we take the answer to be
temperature, or more specifically seasonal temperature forecasts. Our strategy
for improving demand forecasts, then, centers on the incorporation of seasonal
temperature forecast data into an electricity demand model.
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In this thesis we present:

1. An electricity demand forecast model based on dimensionality reduced
temperature grids which aims to forecast energy demand at the medium-
term (up to 60 days) horizon.

2. A probabilistic temperature forecast model based on seasonal Numerical
Weather Prediction (NWP) ensemble models whose output can be folded
into the energy demand model.

The incorporation of temperature in the field of electricity demand forecasting
is not new. Previous research has shown both the importance of temperature
as a predictor in demand forecasting and incorporated temperature forecasts
into demand models. The main innovations of our approach are the following:
First, we introduce a medium-term forecast model for electricity demand in
the Nordic region, utilizing seasonal NWP temperature forecast data. Second,
other researchers (e.g. De Felice et al. (2015)) have focused on season specific
temperature effects on electricity demand. We develop a year-round demand
forecast model, which takes account of the varying effects of temperature on
demand throughout the year. Third, we also introduce a re-weighting scheme
for NWP forecasts in principal component space. By reweighing temperature
forecasts after how well they recently have performed, we can ‘update’ the
forecast and obtain short term improvements in skill at any time point. Fourth,
we build a Gaussian Copula (GC) aggregation method for making forecast
model skill apparent at longer lead times. Our approach also stands out in the
large amount of data employed. We are working with 88392 hourly observations
of electricity demand, over 172 million individual temperature grid observations,
and over 9 million forecasts of temperature at individual grid points.

Energy demand is heavily dependent on local context. Cultural and climatic
factors together with the energy supply mix and infrastructure all influence
how energy is consumed and how much (Wilhite et al. 1996). Our specific case
is the Nordic region, but the models presented in this thesis will have a broader
applicability. The Nord Pool electricity demand data encompasses 7 countries:
Norway, Sweden, Denmark, Finland, Estonia, Latvia and Lithuania, hereafter
for simplicity referred to as the Nordic region. These countries exhibit a high
level of energy consumption per capita, driven by its affluence, cold winters,
and good access to cheap energy sources (SSB 2014). In many continental
European countries, natural gas is the dominant household energy source. In
Scandinavia, by contrast, homes are often powered by electric energy produced
by hydropower, which up until the recent European energy crisis has been very
affordable (Energy Facts Norway 2023). Demand in the Nordics increases in
the winter months due to colder weather which leads to an increased use of
heating appliances (Foldvik Eikeland et al. 2021). Electricity demand thus
exhibits clear seasonal variation, and a clear dependence on temperature. Of
particular concern is peak electricity demand as it determines the generation
capacity needed to satisfy demand at all times (Lindberg et al. 2019). Since
peak electricity demand occurs at low temperatures, forecasting temperature at
extreme quantiles becomes important.

The overarching question this thesis aims to answer is: How can we
forecast future energy demand at the medium-term range based on probabilistic
temperature data? This overarching question can be divided into two research
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problems: 1) How can we build a good structural model for predicting energy
demand by using temperature data? 2) How can we use seasonal NWP forecasts
to give us distributional estimates of future temperature which we can fit into
our demand model? We give a brief outline of our strategies for solving these
problems below.

Problem 1: Structural Demand Model

The first problem concerns how we can build a good structural model for
forecasting electricity demand by using observed temperature data. Our interest
is to forecast demand at the regional level covering the Nordic region. The Nord
Pool electricity demand data we will utilize, summarizes the demand volume
(MWh) for the Nordic market. The main predictive source we will employ
is the ERA5 temperature observations covering a 21× 22 sized grid over the
Nordic region for latitudes 55◦ to 75◦ and longitudes 4◦ to 25◦. This data is
dense and highly correlated both temporally and spatially (see Section 4.2). By
utilizing a PCA decomposition of the temperature grid and extracting the first
principle components (PCs) we obtain features that effectively summarize the
temperature variation of the grid across time points. Our working assumption,
then, is that the principal components of the temperature grid provide an
effective summary of the state of the temperature grid, which we can relate
directly to electricity demand. To model this relation, we use a Generalized
Additive Model (GAM). We will refer to variations of these models by the term
GAM-PC.

The GAM-PC models are structural models in the sense that they seek to
model demand at a specific target time, t, by utilizing temperature at the same
target time. Since the target time in a forecast setting always is at some point
in the future, the structural models work under the assumption that we have
access to future temperature observations, or equivalently, perfect forecasts. By
describing the relation between demand and temperature, the structural model
prepares the ground for the incorporation of NWP forecast inputs.

A central part of modelling the relation between electricity demand and
temperature is to uncover how much improvement can be gained by including
temperature information in the demand model. For this purpose, we will explore
and contrast different combinations and parametrizations of temperature data
and time information (which we will model as fixed effects), to ascertain the
source of increased predictive performance.

Problem 2: Probabilistic Temperature Forecasting

The second problem relates to how we can use seasonal NWP temperature
forecasts to give distribution estimates of future temperature which we can
utilize in our demand model. NWP forecasts are ensemble forecasts, which
means that they are composed of a set of forecast members which together form
a predictive distribution. The NWP ensemble forecasts are meant to give a
probabilistic description of future temperature at individual grid points.

Our concern is how we can transfer the predictive distribution over a set grid
into predictive distributions for principal components (PCs) of the forecasted
temperature grid. We solve this by first performing a PCA decomposition on
each individual forecast member. We then obtain the predictive distribution of
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1.1. Thesis Outline

each principal component of interest by employing a sample quantile estimator
over all ensemble members. We go on to evaluate how well the NWP forecasts
in PC space perform in estimating observed PC temperature. By employing
quantile regression we also look at whether we can gain predictive performance
by adding weights, lagged forecasts and time covariates to the sample quantile
estimates.

A constraint with regard to the utility of the NWP forecasts manifests itself
when assessing performance at the hourly level. Compared to the baseline
reference model, performance is only better for the first 15 days after a forecast
is issued. The term ‘forecast issuance’ is used throughout to refer to the release
of a forecast. In our thesis we tackle this problem in two ways. We first introduce
a re-weighing scheme in principal component space. It can be performed at
any time after a forecast has been issued for the purpose of obtaining short
term improvements in skill. Each ensemble forecast member will be weighted
according to its recent performance in forecasting temperature PCs. Based on
these weights we form new quantile estimates of the predictive temperature
PC distribution. We refer to the release of the forecast with updated quantile
estimates as a forecast re-issuance.

The second way in which we deal with the disappearance of skill at longer
lead times, revolves around forecast aggregation. Aggregation is not a method
for improving forecast skill, but for making the skill of the NWP forecasts
apparent at longer lead times. If a cold front appeared on a Saturday, the
forecast would be wrong if it predicted it would happen on Sunday, but correct
if it predicted it would appear during the weekend. By aggregating forecast
outputs, we allow a skillful model to be rewarded for being slightly correct.
For the purpose of forecast aggregation, we build a Gaussian Copula (GC)
aggregation method which takes account of the correlation structure between
the time points we aggregate over.

1.1 Thesis Outline

The rest of the thesis is organised as follows:

In Chapter 2 we first present an overview of previous research on electricity
demand forecasting, focusing on medium-term forecasts. Even though this
field is somewhat underdeveloped, we find that the influence of temperature
on demand is well established. We then provide an overview of literature
connected to probabilistic temperature forecasting, focusing on NWP
ensemble forecasts. We highlight issues connected to i) forecast updating
through the incorporation of information from new observations, and ii)
forecast aggregation.

Chapter 3 consists of an outline of the main theoretical framework. We
first present the backbone of our modelling approach, namely Principal
Component Analysis (PCA) and Generalized Additive Models (GAM). We
go on to describe the structural demand model. This model combines time
information, in the form of fixed effects, with temperature information,
in the form of principal components within a GAM framework. We then
outline different approaches connected to probabilistic forecasting, namely
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1.1. Thesis Outline

Weighted Quantile Estimation (WQE), Quantile Regression (QR), Re-
weighted Quantile Estimation (RQE) and aggregated quantile estimation by
Gaussian Copulas (GC). We also give a description of our methodological
approach, specifically describing the Prequential Cross-Validation (PCV)
procedure we will employ.

In Chapter 4 we move on to present the main data sources used in this
thesis: the Nord Pool electricity demand data; the ERA5 temperature data;
and the NWP temperature forecast data. We also give a brief description of
computing resources, and programming software.

Chapter 5 presents the results of our investigation of Problem 1 concerning
the structural demand model. We especially focus on three issues. Assuming
we have access to near-future temperature, we first seek to find what model
parametrization of the GAM-PC model gives the most accurate prediction of
near-future energy demand. We also seek to find how much the inclusion of
temperature contributes to increase predictive performance. In addition, we
look at how well the best GAM-PC model performs compared to alternative
implementations, specifically Lasso and XGBoost.

In Chapter 6 we present results pertaining to Problem 2 on probabilistic
temperature forecasting. We first look at the performance of the WQE
sample quantile model. It utilizes principle components of NWP ensemble
member forecasts as inputs for the purpose of forecasting the predictive
distribution of PC temperature. Then, by employing Quantile Regression
we also investigate to what extent adding weights, time fixed effects, and
lagged forecasts to the WQE-estimates contributes to increased forecast
performance. We further demonstrate the effect of re-weighing NWP PCs
based on recent temperature observation, utilizing the RQE model. And,
lastly, we look at how we can make forecast skill apparent at longer lead
times by employing aggregated forecasts which we form by utilizing Gaussian
Copulas.

In Chapter 7 we report results related to the final probabilistic demand
model, which utilizes the NWP forecast data in principal component form
in the demand prediction task.

Chapter 8 provides a summary of the main findings, as well as suggestions
for future research.

Though our specific case is the Nordic region, the methods described in this
thesis will have a utility beyond the application on energy demand prediction.
A plethora of phenomena are influenced by weather generally or temperature
specifically, e.g. shipping, agriculture, wildfires, tourism, and energy production.
If we are interested in a temperature-dependent phenomenon the utilization
of NWP forecasts should be easily transferable to other settings than the one
described here, energy demand prediction. If the phenomena we are interested
in can be modeled with the help of observed temperature, we can use our model
extension to obtain future temperature distributions which we in turn can use
to give predictions for the temperature dependent phenomenon of interest.
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1.1. Thesis Outline

Abbreviations

• ANN: Articifial Neural Networks
• ARIMA: Autoregressive Integrated Moving Average
• BATS: Box-Cox transformation, ARMA errors, Trend, and Seasonal

component
• CDF: Cumulative Distribution Function
• CMCC: Centro Euro-Mediterraneo sui Cambiamenti Climatici (Euro-

Mediterranean Center on Climate Change)
• C3S: Copernicus Climate Change Service
• DWD: Deutscher Wetterdienst (German Meteorological Service)
• ECMWF: European Centre for Medium-Range Weather Forecasts
• EMOS: Ensemble Model Output
• ERA5: ECMWF Reanalysis v5
• GAM: General Additive Model
• GC: Gaussian Copulas
• GCV: Generalized Cross-Validation (GCV)
• GDP: Gross Domestic Product
• MWh: Mega Watt Hour
• MOS: Model Output Statistics
• Météo-France: (French Meteorological Service)
• NWP: Numerical Weather Prediction
• NorCPM: Norwegian Climate Prediction Model
• OOS: Out-of-Sample Validation
• PCA: Principal Component Analysis
• PCV: Prequential Cross-Validation
• PC: Principal Component
• QR: Quantile Regression
• RAFT: Rapid Adjustment of Forecast Trajectories
• RMSE: Root Mean Squared Error
• SARIMA: Seasonal Autoregressive Integrated Moving Average
• SSW: Sudden Stratospheric Warming
• SS: Skill Score
• SVM: Support Vector Machine
• SVD: Singular Value Decomposition
• TBATS: Trigonometric seasonality, Box-Cox transformation, ARMA

errors, Trend, and Seasonal component
• UKMET: United Kingdom Meteorological Office
• WQE: Weighted Quantile Estimation (WQE)
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PART I

Part 1: Literature Review, Theory,
Data
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CHAPTER 2

Literature Review

In this chapter we will give an overview of the background literature for both
the electricity demand forecasting problem and the temperature forecasting
problem. Our aim is not to provide an exhaustive review, but to showcase a
targeted selection of relevant research contributions. In Section 2.1 we will
outline the literature on electricity demand. Our focus will be on approaches
sharing our aim of forecasting at a medium-term horizon at a country/region
scale. Compared to short- and long-term forecasts, little attention has been
given to medium-term forecasts in previous research. In our review we find that
no modeling approach dominates. Nevertheless, the influence of temperature
on demand is well established.

In (Section 2.2) we present relevant research on probabilistic temperature
forecasting centering on Numerical Weather Prediction (NWP) ensemble
forecasts. We will first give a brief outline of NWPs, before we move on
to focus on two specific sub-problems: the incorporation of new information in
ensemble forecasts and how to aggregate model predictions over lead times.

2.1 Electricity Demand Forecasting

In this section we will provide a brief overview of the electricity demand
forecasting literature. This research field is broad, and shows great variation
in terms of modeling framework, predictors, methodology, scale, time frame,
and overall aim (Kuster et al. 2017; Tamba et al. 2018). It covers the full range
from hour-ahead predictions of single building electricity demand to decadal
forecasts at the country or regional level scale. Our focus, however, will lie with
the part of the literature that shares our general aim: medium-term forecasting
of electricity demand at the country or regional level scale. Accordingly, we
will devote most attention to discussing medium-term forecasts, and especially
those that utilize weather information. Further, we will only look at regional
or country-level forecasts, while excluding approaches aimed at local or sector
level analyses (e.g. of single buildings, residential areas or industry sectors).

The literature tends to be country-, or region-specific, as opposed to unified
or general. This ties down to country specific peculiarities in data collection
and availability; energy system infrastructure; and climatic conditions effecting
energy consumption. These elements also make results and methodologies
difficult to compare directly between countries and across cases. An additional
challenge is that electricity demand forecasting exhibits a considerable overlap
with adjoining fields concerned with forecasting electricity price and electricity
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2.1. Electricity Demand Forecasting

load, as well as related topics such as forecasting demand for natural gas. A
characteristic of the Nordic energy system (which is our case) is that cooling
and heating installations often are electricity-based. On the European continent,
in contrast, similar temperature-dependent installations are often gas-based.
The overlap with natural gas demand forecasting (e.g. similar predictors, scales,
horizons and forecasting models) lead us to treat the literature on gas demand
as part of the same discourse as electricity demand.

A convenient way of categorizing the demand forecast literature is by forecast
horizon. While lead time denotes the time span from the forecast is issued
(issuance) to the target time, the forecast horizon refers to the longest such span
of interest (the time frame). Depending on the forecast horizon, approaches
might differ considerably in terms of the forecasting models employed, model
accuracy, predictors, as well as overall aim, and stakeholders (Kuster et al.
2017; Tamba et al. 2018). Before we look closer at medium-term forecasts, we
will briefly summarize the differences between forecast horizons. Even though
distinguishing between short-, medium- and long-term horizons is common,
there is no set definition demarcating the dividing line between them. For
our purposes, we take the medium-term to mean forecasting with lead times
between one week and one year.

Short-term forecast approaches look to forecast at lead times ranging from
minutes ahead up to one week ahead. The forecast outputs are highly relevant
for energy market trading and energy grid use optimization (Foldvik Eikeland
et al. 2021). At this horizon the most common modeling approaches are artificial
neural networks (ANN) and time-series models (ARIMA, TBATS), but Support
Vector Machines (SVM) and regression analysis are also used (Kuster et al.
2017). These models often have a high resolution (i.e. short lead time intervals)
and largely rely upon time information, but they also incorporate meteorological
data.

Long-term forecasts operate with 1—100 year horizons. They are especially
relevant for infrastructure planning (Lindberg et al. 2019), climate change
mitigation (Malka et al. 2023), and industrial development (Huang et al. 2018).
Long-term forecasts tend to employ regression frameworks and econometric tools
which focus on integrating socio-economic indicators such as population change,
GDP growth, inflation, and urbanization. Meteorological information in long-
term models is employed at a relatively crude level, e.g. utilizing average yearly
or seasonal temperature (Günay 2016), or incorporated through overarching
trends such as climate change (Hor et al. 2006). At this time-frame, model
frameworks rely on either extrapolating trends for their predictor variables or
building secondary forecast models for them.

Medium-term forecasts exist in a middle space between the two others
where both long-term trends and short-term fluctuations might complicate the
forecasting task (Mirasgedis et al. 2006). A long-term trend might be clearly
discernible over a time span of several years, but difficult to observe or forecast
at the scale of months. Reliance on meteorological information becomes harder
than in the short-term case since forecast skill (see Section 3.7) decreases by lead
time (Bauer et al. 2015). A systematic overview from 2017 of English language
papers on electrical load forecasting shows that comparatively few papers focus
on medium-term prediction (which they define as between 1 week and up to
several seasons), and that most country level forecasts were long-term (Kuster
et al. 2017). Neural nets, SVM, time series models and regression analysis are
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2.1. Electricity Demand Forecasting

all utilized to forecast at this horizon, but no single modeling approach seems
to dominate (Kuster et al. 2017; Bala et al. 2022). In the following we will give
a presentation of a selection of relevant articles on medium-term forecasts.

A study on forecasting Greek electricity demand found temperature, and to
a lesser degree humidity, to be important predictors (Mirasgedis et al. 2006).
Using two regression models (daily and monthly) they incorporated lagged
variables to account for auto-correlation structures. Training on nine years of
observations (n = 3652) and testing on lead times of up to 1 year, they report
a maximum prediction error of 2.7% and 4.6% for lead times of 1 month and 1
year respectively. The study is, however, subject to a set of potential limitations.
First, it relies on a single year of validation testing, which makes their results
susceptible to the peculiarities of the validation set. Second, while observing
a non-linear relationship between demand and temperature, they model this
through dichotomizing temperature into new variables for heating and cooling
days. Thirdly, the model assumes that accurate weather forecasts are available
at relevant lead times, but they do not provide test results with actual forecast
data.

An important contribution to the medium-term forecasting literature is the
introduction of the TBATS model applied to the task of forecasting Turkish
energy demand (Livera et al. 2011). Training on n = 2191 daily observations
over 6 years, the approach focuses on capturing three seasonal components
including two calendar systems affecting demand patterns of holidays and
religious festivals. The TBATS approach is an innovations state space model
and outperforms the similar BATS model across all lead times (up to 1 year) in
the out-of-sample set covering 3 years of observations.

Bala et al. (2022) forecast demand of both electricity and natural gas in
the UK for lead times up to 36 months. They explore the performance of a
set of models (SARIMA, ETS, NNAR, STL and TBATS) both individually
and combined using simple model averaging (SMA). Training on monthly
observations (n = 327) they employ average temperature and energy price as
their main predictors. For the out-of-sample validation they report that the
SARIMA model obtains the best results on predicting electricity demands,
while the TBATS model performs the best on the natural gas forecasting task.
Like the case for Mirasgedis et al. (2006) the models involved implicitly rely on
forecasts of temperature and energy price. Consequently, the paper does not
distinguish results by lead time, but reports performance across all lead times.
The authors themselves also remark that the low resolution of the data (monthly
observations) makes it difficult to obtain a more granular understanding of the
structure between temperature and energy consumption.

A 2019 paper on electricity demand, temperature and price elasticity in the
Oslo metropolitan region is foremost relevant because of its context (Hofmann
et al. 2019). The aim of the study is not to forecast demand, but to explain
the relation between demand, price and temperature. Employing two similar
regression models, they use demand averaged either daily or over peak 6-hour
consumption as the response variable (n = 1548). In addition to using average
daily temperature as an explanatory variable, they also include time covariates
and other meteorological predictors. They found that temperature is “... by far
the most important explanatory variables [sic] when estimating the short-term
price elasticity of electricity demand in metropolitan areas with electricity-based
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heating" (Hofmann et al. 2019).1 They also report that variables representing
wind speed, humidity and sun exposure are not needed to adequately model
electricity demand in Oslo.

Another important contribution is De Felice et al. (2015), which introduces
seasonal forecasts into the energy forecasting literature for the purpose of both
deterministic and probabilistic forecasting. Their case is Italy, where they
focus exclusively on summertime electricity demand. This is driven by the use
of cooling devices, especially during warm weather periods. They utilize an
expansive grid of temperature observations and a regional grid for electricity
consumption as their main data sources. To deal with the high-dimensionality
of the data they employ a coupled manifold approach which involves subjecting
both grids to a Principal Component Analysis (PCA) transformation. This
reduces their temperature field from 8892 to 214 dimensions, and their demand
field from 7 to 6. For model evaluation they use a leave-one-out cross-validation
(applied year by year), utilizing correlation coefficients and Brier Skill Score as
performance metrics for the deterministic and probabilistic cases respectively.
Results are highly dependant on lead time, the 30+ days ahead forecast far
outperforms the 60+ days ahead, especially for probabilistic forecasts. The
performance of the probabilistic forecast is similar for their SVM model and
their linear regression model. For the deterministic forecasts they find their
SVM model to outperform the linear model (with the same inputs) both on
average and for 5 of the 7 regions. We were made aware of the work by De
Felice et al. at a relatively late stage of our project, thus it had no effect on
the planning or testing of our models. We will, however, contrast this approach
with our own when applicable.

To summarize, we note, first, that there is a dearth of approaches focused on
forecasting demand at the medium-term horizon relative to short- or long-term
approaches. Kuster et al. (2017) claims that this is largely because short-
and long-term horizons are the most relevant for industry stakeholders. We
find this line of reasoning unconvincing, and refer back to the introduction for
relevant applications of medium-term forecasting. Kristiansen (2014), which
is concerned with forecasting electricity spot price for the Nord Pool market,
claims that algorithms in this area often are proprietary, precisely because of
stakeholder interest, and therefore represent a lack in the public discussion.
Another explanation offered is that forecasting at this horizon is hard because it
involves balancing short- and long-term patterns, as well as managing complex
high-dimensional data sources (Mirasgedis et al. 2006; De Felice et al. 2015).

We further observe that several different forecast models are employed,
including regression, time series and neural nets. No modeling approach is
clearly dominant, and no consensus on model choice has been reached. The
important link between temperature and energy use has long been known
(Valor et al. 2001), and most approaches use temperature information in their
forecasts. An overview of natural gas demand forecast comes with the concluding
recommendation that the effect on model performance of including weather
forecasts instead of just weather measurements should be examined (Tamba
et al. 2018). Time information is the other commonly used data source, while
other meteorological information (e.g. humidity, and wind) is observed to have

1Since this is not a forecasting paper, the use of short-term here is potentially misleading.
In this case it refers to the lag in the measured price elasticity, not to forecast horizon.
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little or no effect on demand.
Lastly, we note that the field lacks explicit performance benchmarks for set

forecast horizons. Moreover, we do not find a common set of baseline models
that forecasts are compared against. Further, even if temperature is noted as
an important predictor, little emphasis has been put on how much the addition
of temperature increases model performance. Overall, the field is relatively
new, and valuable contributions could still be given both in terms of specific
country-level analysis, but also with regard to comparing methods and results
across contexts.

2.2 Probabilistic Temperature Forecasting

As we have seen, the utilization of temperature information in the literature
on electricity demand forecasting ranges from taking crude averages to
incorporating complex temperature forecasting grids. Our approach resembles
De Felice et al. (2015) and involves folding in probabilistic temperature forecasts
from Numerical Weather Prediction (NWP) models into our demand forecast.
In this section, instead of providing a full overview of temperature forecasting
as such, we will restrict our attention to outlining central aspects of NWPs.
In addition, we will highlight the discussion of two issues related to NWP
ensembles, namely the incorporation of new information in ensemble forecasts;
and how to aggregate model predictions over lead times.

Numerical Weather Predictions (NWPs) use mathematical models based on
physical principles to forecast future atmospheric conditions. NWPs rely on
first characterizing the present state of the atmosphere through observations
and data assimilation, before projecting that state forward through solving
partial differential equations describing laws of atmospheric motion (Pu et al.
2019). Data assimilation refers to the process by which the model simulations
are corrected by observed meteorological states in order to find the best initial
conditions before the forecast is issued. The equations are solved numerically
and often require both substantial time and computational resources (Brajard
et al. 2023).

Ensemble forecasts were introduced in the 1990s and are now the most
prevalent form of NWPs. They are composed of a set of ensemble members
each being a deterministic simulation of future weather. Acting together, the
ensemble forms a distribution, the spread of which reflects the uncertainty in
the forecast (Bauer et al. 2015). Since the ensembles rely on simplifications of
the physical system they model, they might be biased. They might also produce
underdispersed forecasts, meaning that the ensemble spread might not reflect
the uncertainty in the forecast by being too narrow. The ensemble therefore
requires statistical post-processing where it is re-calibrated according to past
performance (Heinrich et al. 2021, Schuhen et al. 2020). Ensemble Model Output
Statistics (EMOS) is a common post-processing technique which involves using
the spread of the ensemble to improve the uncertainty in predictive distribution
of the forecast. The utilization of NWP forecast output as input in other
forecasting tasks has been attempted in several fields, including forecasting of
demand, and wind-power production (De Felice et al. 2015; Al-Yahyai et al.
2010). The seasonal NWP forecasts we will utilize are further described in
Section 4.3.

12



2.2. Probabilistic Temperature Forecasting

A problem with ensemble forecasts, such as NWP, is that developing them
is often computationally heavy and time-consuming, resulting in long (often
monthly) intervals between forecasts. New observations might be available
already before the forecast is shipped, rendering them not up-to-date even upon
release (Brajard et al. 2023). Since forecast performance drops over time, the
end period between forecast issuances might (depending on the model) also
see a substantial drop in forecast skill. To update the forecast ensemble and
increase model performance it is therefore desirable to incorporate information
from the newest available observations into the ensemble forecast.

Lean et al. (2021 ) approach this by integrating new observations continuously
during the process of assimilation (where the model members are corrected by
observed weather information) before the NWP forecast issuance. Using this
continuous data assimilation framework, they report a reduction in RMSE for
medium-range forecasts by 2− 3%. Schuhen et al. (2020) address the issue of
incorporating new observations for short term NWP forecasts by introducing
the Rapid Adjustment of Forecast Trajectories (RAFT) method. In addition
to standard post-processing the method updates the forecast every time new
information becomes available. Based on the error correlation structure within
a forecast trajectory, adjustments are estimated by least squares and are unique
to each lead time. The adjusted RAFT forecast is obtained by adding the
adjustments directly to the EMOS mean forecast. They report an improvement
in RMSE forecast skill of 40% on average when updating 32-hours old forecasts
based on new data.

Also relevant for our purposes is Brajard et al. (2023), which introduce a
weighing method for adjusting the contribution of ensemble forecast members.
Their case centers on the Norwegian Climate Prediction Model (NorCPM)
model, which assimilates sea surface temperature and hydrographic information
through a Kalman Filter. Using a 1-week weighting period they improve the
accuracy of the ensemble forecast up to a lead time of two months. Their
weighting scheme relies on estimating localised weights at each grid point for
each member based on local accuracy. Employing a Bayesian framework, these
weights form part of the posterior density for the model state given the recent
observations. The weights themselves are proportional to a Gaussian likelihood
over the distance between the observed and predicted sea surface temperature.
We will revisit this problem in Section 3.5 where we present a method for
adjusting ensemble forecasts in principle component space, and in Section 6.4
where we will test this method using NWP input data.

The second problem we will discuss, revolves around how to aggregate model
predictions over lead times. Temporal aggregation of time series forecasts is
the process of combining observations for the purpose of improved predictive
skill and has been utilized since the 1970s. When non-overlapping temporal
aggregation is applied to a times series, it filters out high-frequency components,
leaving the trend and cyclical patterns (the lower frequency components) to
dominate. In this manner the underlying skill of the model might become
apparent (Nystrup et al. 2021). A paper relevant for its application to short-
term electricity load forecasting in Scandinavia is Nystrup et al. (2021). The
method that they develop, takes account of a hierarchy of temporal aggregations
at different aggregate levels reconciled through doing an eigendecomposition of
the cross-correlation matrix. Even though their case is relevant, their interest
lies foremost in the relation between different temporal hierarchies, not in the
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specific aggregate levels themselves.
More relevant for our purposes are works that utilize copula estimation

methods to deal with the correlation structure across different variables or time
points. In a probabilistic setting Henze et al. (2020) utilize copulas to take
account of the correlation structure between wind-farms and time points to
form probabilistic forecasts of wind energy production. Also, for the application
of wind-power production estimation, Pinson et al. (2009) utilizes a copula
method for the purpose of estimating the correlation between forecast horizons.
Especially relevant for our purposes is Möller et al. (2013). They describe
a copula approach meant to take account of the correlation structure across
weather variables of different types over time intervals. This involves first
estimating the marginal distributions for each variable, and transforming these
to latent Gaussian factors. From these, one can estimate a correlation matrix,
which one can utilize as a basis for sampling new observations where the
correlation between variables is taken account of. They highlight the flexibility
of their copula-based approach, as the marginal distributions can be estimated
by any method, without the joint distribution being affected.

The problem of forecast aggregation is addressed in Section 3.6, where we
describe a copula aggregation method inspired by Möller et al. (2013), and in
Section 6.5, where we will show the results of the aggregation method.
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CHAPTER 3

Theory

In this chapter we will describe the main theoretical frameworks employed in
this thesis. As stated in the introduction the main model we explore is a GAM
model which incorporates principal components (PCs) of the temperature grid
as feature inputs, for the purpose of electricity demand forecasting. Accordingly,
in Section 3.1 we present the main properties of Principal Component Analysis
(PCA) as well as a method for obtaining PCs through a Singular Value
Decomposition (SVD). Then, in Section 3.2, we describe the main characteristics
of Generalized Additive Models (GAM). In Section 3.3 we specify the form of
the GAM-PC models which we will explore. We will focus on describing them
as structural demand models.

The second problem of this thesis concerns how NWP temperature forecasts
can be utilized, within principal component space, to obtain temperature
predictions. In Section 3.4 we contrast probabilistic forecasting with point
forecasts and describe the methods of Weighted Quantile Estimation (WQE)
and Quantile Regression (QR). We then (Section 3.5) introduce a re-weighting
scheme specifically for the principal component space. In Section 3.6, we
describe methods for performing aggregated forecasts focusing on Gaussian
Copulas (GC). We conclude this chapter with Section 3.7 concerning evaluation
procedures, and Section 3.8, which presents the evaluation metrics we will
employ.

3.1 Principal Component Analysis

Principal Component Analysis (PCA) is a dimensionality reduction technique
employed in a wide variety of statistical applications (Hastie et al. 2009; Jolliffe
2002; Lay 2021). With regard to forecasting it is often used within the domain
of retail, weather and macro-economics (Petropoulos et al. 2022; Esmaeili et
al. 2011). PCA works by transforming a (usually large) set of p correlated
variables in such a way that most of the variation within the original set is
concentrated within a small subset of the new variables. The new variables are
called principal components (PCs). They are uncorrelated and ordered after
which variable explains most of the variance; the first PC explaining the most.
The dimensionality reduction is performed by keeping only the first m < p
principal components which account for most of the variation. The choice of
m is usually based on the variance explained by each PC. For our forecast
application we will use a combination of heuristics and testing to decide upon
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m (see Sections 4.2 and 5.4).
Let X be a centred n× p matrix, with column vectors xj , whose column

means are x̄j = 0, with S∗ = 1
n−1XT X being its diagonalizable, positive

semi-definite p × p sample covariance matrix. For convenience we will work
with S = XT X which will yield the same results up to a constant. The
eigendecomposition of S is then given by:

S = VDV−1, (3.1)

where V is a p× p matrix containing the eigenvectors of S, and D is a diagonal
matrix whose diagonal elements λjj are the eigenvalues of S. Since S is positive
semi-definite all eigenvalues are positive. Consider, then, the linear combination
across all p columns of X:

x1a1 + x2a2 + ...+ xpap = Xa, (3.2)

where a ∈ Rp is a vector of constants. We then define the first principal
component as the vector c1 = Xa1 ∈ Rn to be the version of (3.2) with the
highest sample variance. We therefore want to find the vector a1 that provides
the maximum of Var(Xa) = aT Sa. This can be found by introducing the
normalizing constraint aT a = 1, in a Lagrange multiplier optimization problem
(Jolliffe 2002):

a1 = argmax
a∈Rp

aT Sa − λ(aT a − 1), (3.3)

where λ is the Lagrange multiplier and the constraint is specified in the
parenthesis. By differentiation with respect to a and setting the expression
equal to zero to find the maximum value, we get:

Sa − λS = 0
(S− Ipλ)a = 0

(3.4)

The first solution, obtained by setting a = 0, is not viable as it yields the
minimum at Var(Xa) = 0. The second solution is obtained when the covariance
matrix equals the multiplier vector or equivalently when Sa = λa, which is the
standard eigenvalue equation. This allows us to re-frame the question, as it
means that the Lagrangian multiplier λ can be found as an eigenvalue λjj along
the diagonal of D, and that we can find a as the corresponding eigenvector
vj ∈ V. Utilizing the identity implicit in (3.4), and the normalizing constraint,
we can reformulate the variance of (3.2):

Var(Xa) = aT Sa
= aTλa
= λaT a
= λ.

(3.5)

Finding the largest variance, then, is tantamount to finding the largest eigenvalue
(and this must also be the maximum). If we denote by λ1 the largest eigenvalue,
and v1 the corresponding eigenvector, then the vector of constants that
maximizes the variance of (3.2) is a1 = v1. The first eigenvector, v1, points
in the direction of the most variance, and the first principal component is the
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linear combination of the columns of X with the highest sample variance. That
is to say, it describes the most predominant structures of the original data.
Each subsequent jth principal component is created by finding the jth largest
eigenvalue and its corresponding eigenvector. Each vj points in a direction
orthogonal to all preceding eigenvectors; each one pointing in a direction of
less variance than the previous. On a terminological note, the literature on
PCA across disciplines employ many terms for both eigenvectors and principal
components (including loading, coefficient and empirical orthogonal function)
(Jolliffe 2002). Most confusingly different parts of the literature refer either
to the eigenvectors of S (Lay 2021) or to the linear combination (3.2) (Jolliffe
2002) as principal components. We will stick to the latter usage.

PCA by Way of SVD

To obtain the principal components we only need to find the eigenvector-
eigenvalue pairs. A computationally efficient method for this purpose is the
Singular Value Decomposition (SVD) (Jolliffe 2002). The SVD can be attained
for any (finite-dimensional) matrix X, and is given by:

X = ULAT , (3.6)

where U is a n × p orthogonal matrix containing the left singular vectors, L
is a p × p diagonal matrix, containing the singular values, and A is a p × p
orthogonal matrix with columns called the right singular vectors. We can then
show that S can be expressed through the components of the SVD of X (Hastie
et al. 2009):

S = XTX
= (ULAT)T(ULAT)
= ALTUTULAT

= ALTLAT

= AL2A−1.

(3.7)

Since this is on the same form as (3.1) this is also an eigendecomposition of
S. One can therefore obtain the eigenvectors and eigenvalues of S from the
elements of the SVD decomposition of X. The eigenvalues are found in A
and the eigenvalues are found as L2. From these we can form the principal
component matrix as C = XA or equivalently as C = UL.

A computational advantage can be obtained by applying the SVD directly
to S. By utilizing the identity obtained in (3.7) one can form:

S = ŨL̃ÃT

= AL2A−1

= AL2AT .

(3.8)

Because S is a p×p matrix, so is Ũ. Which means we can obtain the eigenvectors
by Ũ = A = Ã, while L̃ = L2 yields the eigenvalues. A property of this
decomposition is that it is antipodaly symmetric. This means both Ũ and −Ũ
will provide valid decompositions, i.e. the identity Ũ = A is only accurate
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up to the sign. The practical consequences of this are minor. The sign itself
ought not affect the predictive performance of models including the PCs, but
it will affect the sign of the model coefficients. For our purposes we have
chosen the sign direction which aligns the first PC with the electricity demand.
This will be further explored in Section 4.2. Applying the SVD directly to S
speeds up computations by a factor of 3.5 at 80.000 time points (this includes
forming S). Compared to applying SVD on X the results are equivalent up to
a tolerance level close to machine precision, with a mean relative difference of
matrix elements of 3.12e-15.

In our applications we utilize PCs in two manners. The first manner involves
obtaining pre-trained eigenvectors, once only, from a specified time interval
that provide a ‘historic’ representation of the structure of the temperature grid.
These will then be applied to later occurring training and test observations of
the temperature observations. The other approach involves iteratively obtaining
new eigenvectors for each monthly forecast issuance. This provides an ‘up to
date’ depiction of the temperature grid structure.

Either way we will use the same general framework, specified in Algorithm 1.
We first find the appropriate eigenvectors based on a training set, Xtrain, which
is either ‘historic’ or ‘up to date’. We subsequently apply these eigenvectors
to an ‘up to date’ training set, Xup, to form the training PCs, Ctrain. Note
that depending on the application we might have Xtrain = Xup. We then apply
the eigenvectors from Xtrain to the test set, Xtest, to obtain Ctest. The final
output is then acquired by applying ψj(·), a function selecting the principal
component corresponding to the jth largest eigenvalue. Once the PC matrix
is formed ψj(·) is usually applied for ∀ j ≤ m, but we will also test different
combinations of PCs (see Section 5.3).

From this structure it is clear that we do not always apply the PC
transformation back on the original training data, but also on new train and
test observations. In this manner we avoid contaminating the training data
with values from the test set. The forecasts we form will be based on: 1) a
model structure learned from the relation between a set of PC vectors, ctrain

j ,
and demand; and 2) input values, ctest

j , which are PCs formed from eigenvectors
derived from the training set. The selection of principal components to include
in our model is then subject to forecast performance on the test set.

3.2 Generalized Additive Models (GAM)

Following notation by Agresti (2015), we let yi be a random response variable
for observations i = {1, ..., n}, with mean µi = E[yi]. Further, let X be an
n× p model matrix, with explanatory variables xj as columns and with row
inputs xi = (xi1, ..., xip). A Generalized Linear Model (GLM) is a regression
model on the form:

g(µi) = ηi, (3.9)

where the link function, g(·), connects the mean of the response to a linear
predictor ηi =

∑p
j=1 βjxij . This is a generalization from the ordinary linear

model which we obtain by using the identity link g(µi) = µi and a normal
response, yi, which we can write as:

yi = ηi + ϵi, (3.10)
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Algorithm 1 Finding Principal Components

1: Input: Xtrain, Xup, Xtest, j.
2: for i = 1 to p do
3: xi ← xtrain

i − x̄train
i ▷ Center columns of Xtrain.

4: ẍi ← xup
i − x̄

up
i ▷ Center columns of Xup.

5: x̃i ← xtest
i − x̄train

i ▷ Center Xtest using column means from Xtrain.
6: X← (x1, ...,xp) ▷ Form centered training matrix X.
7: Ẍ← (ẍ1, ..., ẍp) ▷ Form centered ‘up to date’ matrix X∗.
8: X̃← (x̃1, ..., x̃p) ▷ Form centered test matrix X̃.
9: S← XtX ▷ Find covariance matrix up to a factor.

10: ŨL̃ÃT ← S ▷ Perform SVD decomposition directly on S.
11: if Xtrain ̸= Xup then
12: Ctrain ← ẌŨ ▷ Transform ‘up to date’ training data to PC space.
13: else
14: Ctrain ← XŨ
15: Ctest ← X̃Ũ ▷ Transform test data to PC space.
16: Output: ctrain

j , ctest
j ← ψj(Ctrain), ψj(Ctest) ▷ Obtain jth PCs.

where the random component, ϵi ∼ N(0, σ2), specifies the distribution of
the residuals (Agresti 2015). A Generalized Additive Model (GAM) is an
extension of the GLM that allows the specification of the linear predictor with
flexible smoothing terms while keeping the additive structure as well as the
customizability of both g(·) and the choice of distribution (Wood 2017; Hastie
et al. 2009). It has the form:

g(µi) = f1(xi1) + f2(xi2) + ...+ fp(xip), (3.11)

where each fj(·) can be customized to be a regular linear term, e.g. βjxij ,
or to be smooth functions s(·), also called splines. In the special case of all
fj(·)-functions being linear, then (3.11) defaults to a GLM. The smooth function
is a sum of weighted basis functions bk(·) applied to the same covariate input
xij :

s(xij) =
K∑

k=1
βkbk(xij). (3.12)

In contrast to polynomials, which are defined on the whole range of the covariate
xj , each basis function might only affect a small interval of xj-values. This
constitutes the main advantage of utilizing the GAM framework: it allows for
more flexible modelling options. The coefficients for the basis functions of the
spline terms are found by minimizing the sum of squares subject to a penalty
term:

PRSS(f1, ..., fp) =
n∑

i=1

yi −
p∑

j=1
fj(xij)

2

+
p∑

j=1
λj

∫ (
∂2fj(xj)
∂x2

j

)2

dxj .

(3.13)
The first part of this objective function penalizes the model fit. The second is a
penalty term controlled by the smoothing parameter λ. It penalizes the amount
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of wigglyness, expressed as the second derivative of each spline. The coefficients
are found by the back-fitting algorithm. To update the function estimate f̂j(·)
it applies a smoothing term to residuals obtained by fitting all functions in the
model except f̂j(·). This is iteratively performed for each function until the
change in each f̂j(·) sinks below a threshold (Agresti 2015; Hastie et al. 2009).

In our application we have used the gam-function from the mgcv (mixed
GAM computational vehicle) package. When modelling PCs we have used the
default thin plate spline setting for finding the coefficients. This is a low rank
smoother which automates the selection of smoothing parameters in the basis
functions. It utilizes an eigendecomposition, not of the input, but of the basis
spline functions to reduce the size of the basis spline expansion, where the term
k sets the dimensionality of the basis expansion. With regard to the specification
of k we found that the default setting was adequate without further adjustment.
For the cyclical time covariate terms we have used cyclical splines to satisfy the
requirement that the ends meet up at the end of each cycle (see Section 5.2).
The smoothing parameter λ is found by Generalized Cross-Validation (GCV),
it is the default option and recommended for minimizing out-of-sample error.

3.3 Structural Demand Model

Having outlined the central facets of Principal Component Analysis and
Generalized Additive Models we are now in position to present the key
model form that we want to explore in Chapter 5 concerning electricity
demand forecasting. The aim of exploring this model is to establish a
structural relationship between demand and temperature focused on predictive
accuracy. We will first present the model form, before we describe the specific
characteristics of our modelling approach.

Let yt ∈ R+ be a random variable representing electricity demand at forecast
target time t. Then let xt = (xt1, ..., xtp+1) be an input vector consisting of
an intercept and p time covariates (e.g. ‘hour’, ’month’, etc), while we let
zt = (zt1, ..., ztd) be a d-length input vector indicating temperature information.
A further presentation of the data is given in Chapter 4. Let further f(xt) be
some function specifying any combination of the time covariates which might
include an intercept, linear terms, interaction terms or splines. And let h(zt),
similarly, be some function of the temperature information. The model form of
the structural electricity demand model we want to explore is a GAM which we
write as:

yt = f(xt) + h(zt) + ϵt, (3.14)
where ϵi ∼ N(0, σ2). For the sake of model simplicity we assume normal errors
and we employ the identity link g(µt) = µt, which is the canonical link function
for a normal response variable. Since the observed demand is yt > 0∀ t we could
have opted for a log-link to constrain the output to be positive. In practice,
our model estimates far exceed 0, so the log-link is not needed.

Of special interest (and thus anticipating the results) is the GAM-PC1+2-
model. This is a version of (3.14) which incorporates the first two principal
components of the temperature field. Let the jth PC be a function of the
temperature information, i.e. Cj

t = ψj(zt), and we can then specify h(zt) by
two smoothing terms s(·) applied to C1

t and C2
t at target time t:

yt = f(xt) + s(C1
t ) + s(C2

t ) + ϵt. (3.15)
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3.3. Structural Demand Model

The performance of this model is investigated in Section 5.4.
We have approached the demand forecasting problem as a structural

modelling task. Expanding on an outline from Shumway et al. (2017) we
take this to involve three aspects:

• First, we model trend and seasonality by time covariates, through f(xt),
which act as fixed effect terms.

• Second, we make the simplifying assumption that the time dependency
is captured by the time covariates so we do not attempt to model the
correlation structure between timed observations explicitly.

• Third, we assume we have access to future temperature observations, or
equivalently, perfect forecasts.

The structural model builds a relation between variables at target time t. By
working on a good specification of this model we can establish a straight-forward
interpretable model framework, which is easy to expanded upon. Its main utility,
then, is as a cog in a larger model framework. Specifically, it facilitates the
incorporation of probabilistic inputs of temperature.

As forecast engines issued by trusted weather services, we assume the
NWP forecasts provide a good representation of the observed temperature field,
including the correlation structure between time points. Under this assumption
we will rely on the NWP forecasts to handle the correlated aspects of the demand
time series related to temperature. Instead of working with the correlation
structure explicitly through more traditional time series modeling, our strategy
is to work with the correlation structure implicitly through the incorporation of
NWP forecast information. Now, there are some correlation structures specific
to the demand observations that is not captured by the inclusion of temperature
in the model, that we have not worked with. We consider this work to be a
possible but less central expansion of our model.

When the GAM-PC models are fed forecast inputs we no longer refer to
them as structural models, but as probabilistic models that incorporate forecast
information. To make this distinction clear we utilize a specific notation scheme
to distinguish when we use ‘perfect forecast information’ in the demand model
and when we utilize actual NWP forecasts. Let us first note that the structural
demand model is a point forecast. The point forecast is an estimate of the
conditional expectation of a random variable, yt, whose forecast is issued at
time t− k for a given lead time k, thus being realized at target time t. Slightly
altering the notation from Pinson et al. (2009) we write this as ŷt|t−k. Now,
when we use perfect forecast information, the conditioning on the issuance
time becomes irrelevant. If we have perfect information we will form the same
forecast whether we are one month or one year away from the target time. We
indicate this by omitting the reference to the issuance and simply write ŷt. In
Chapter 5 we only concern ourselves with models where we assume we have
perfect knowledge about future temperature. When dealing with NWP forecasts,
however, the conditioning on issuance time becomes vital since performance is
directly related to the lead time.

To summarize: The demand forecasting problem involves specifying the best
performing combination of different versions of f(xt) and h(zt) with regard
to prediction accuracy for a point forecast. Problem 2, on the other hand,
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3.4. Probabilistic Forecasting

concerns finding probabilistic forecasts of temperature PCs, Cj
t , which we can

fold into the electricity demand model. In the following sections we turn to the
theoretical framework for the temperature forecasting problem.

3.4 Probabilistic Forecasting

A probabilistic forecast, in contrast to the aforementioned point forecast, takes
uncertainty into account and gives a fuller picture of possible realizations of
the predicted variable (Henze et al. 2020). To describe this uncertainty we use
different forms of quantile estimators, which we denote by Bα(·).1

Consider the random variable yt ∈ R, at time t, with its strictly increasing
cumulative distribution function Ft(·). The quantile qα

t ∈ R, for a specified
proportion α ∈ [0, 1], is then uniquely defined by the inverse CDF (Pinson et al.
2009):

qα
t = F−1

t (α). (3.16)

The quantile value itself forms the dividing line of the value range where the
probability of observing a realization that is lower than some qα

t equals α, i.e.
P (yt < qα

t ) = α. The aim of a quantile estimator, Bα
Yt

(·), is to estimate the
inverse CDF of yt at a specified α, through the utilization of some input, thus
obtaining an estimated quantile:

q̂α
t = Bα

yt
(·). (3.17)

Thus, in contrast to Bayesian approaches, where any posterior quantile or
interval can be obtained from the same posterior predictive distribution (Gelman
2013), the quantile estimators, Bα

yt
(·), must be refitted for each α (e.g. by

obtaining α-specific coefficients, βα). In some applications we will also utilize
a range of m quantile forecasts (typically m = 9), which together form the
predictive distribution set B̂yt(Pinson et al. 2009):

B̂yt = {q̂αi
t |0 < α1 < . . . < αm < 1}. (3.18)

Our application of probabilistic forecasting is detailed in Chapter 6. It concerns
the task of forecasting principal components of ERA5 temperature, Cj

t , from
principal components of monthly issued NWP forecasts. Of special interest for
this purpose is estimating the 0.9-quantile of the first temperature PC. We refer
to this as a quantile forecast of C1

t at α = 0.9 and it involves finding a good
expression for B0.9

C1
t
(·). The 0.9-quantile is of importance as it marks the PC

value associated with especially cold deviations from the temperature mean. In
Section 4.2 we will establish that this corresponds with periods of high energy
demand.

Before we move on to describe these methods it is necessary to introduce the
structure of the NWP forecasts which will form the backbone of our probabilistic
modelling. Let N 1:M

i+k|i be a collection of M matrices each containing forecasts
for an NWP ensemble member. At the beginning of each month, at forecast

1Alternative approaches include making interval or density forecasts, e.g. through Bayesian
modelling.
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3.4. Probabilistic Forecasting

issuance time i, each member, m, issues a k × p forecast matrix, Nm
i+k|i over

lead times k = {1, . . . , 500}, where each step is a 6-hour interval over 125 days,
covering p = 462 grid points.

The subscript notation makes explicit the relation between the target time,
t = i+ k , and the forecast issuance time i. For matrices we use this notation
over a set of lead times k. For individual forecasts we will use the subscript
t|t−k, indicating the forecast which is targeting time t, and issued at time t−k,
for a specific lead time k. We use this notation consistently in order to be able
to refer to models that include data from different forecasts. To form a forecast
we depend both on a model and predictor values for the target time. These
predictor values must either be forecasted, in which case they are dependent on
lead time, or we can assume perfect information, which means the predictors
are not dependent on lead time. We prefer this notation as it also enables us to
contrast elements in a model which has lead time critical information (where
we use the conditional subscript) from elements that do not (where we only
refer to the target time).

Even though the NWPs are issued as point forecasts, together they effectively
constitute an estimate of the temperature distribution for each grid point at
each target time. The same perspective can be applied in principal component
space: Let Ũ be a p× p matrix of eigenvectors obtained from the SVD of the
covariance matrix of historic ERA5-temperature data (as described in Section
3.1). We can then obtain the jth principal component for NWP member m by
applying the function ψj(·) (which selects the PC vector corresponding to the
jth largest eigenvalue) on the transformed forecasts:

Ĉj,m
i+k|i = ψj(Nm

i+k|iŨ). (3.19)

Since this is a principal component transformation of the original forecast, we
view this as a point forecast in PC space, hence the specification of issuance
time. Obtaining this for all NWP members we form Cj,1:M

i+k|i , a set as of M PC
vectors. This set can be used as an estimate of the distribution of the jth ERA5
temperature PC at every target time t = i+ k. For a specific target time t and
a specific lead time k we write this set as Cj,1:M

t|t−k . Our strategy for estimating a
quantile of Cj

t , then, for a specific target time t with lead time k is to apply a
quantile estimator, of some form, with the above mentioned set as input:

q̂α
t|t−k = Bα

Cj
t

(Cj,1:M
t|t−k ). (3.20)

In the following we describe the main methods we use for estimating PC
quantiles, namely quantile regression, weighted quantile estimation, re-weighted
quantile estimation, and copula quantile estimation. These methods should not
necessarily be viewed as in competition with each other, but as tools for solving
slightly different problems.

Weighted Quantile Estimation

The most basic quantile estimation modelling framework we consider is called
Weighted Quantile Estimation (WQE). It will also be utilized as a building
block by other models described below. The WQE model employs a standard
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3.4. Probabilistic Forecasting

sample estimator on the set of NWP principal components and applies this
straight-forwardly as a forecast of the temperature PC quantile.

For this purpose we utilize the quantile-function implemented in the stats
package in R. This is not a consecutive order statistic where the quantile of
interest is found directly from the order, but a weighted average of said order.
We use the default method (Type 7) which employs a linear interpolation
between points (αk, xk) where αk = k−1

n−1 is the modal position of the k’th
ordered observation of a vector x. The quantiles are then given by a weighted
average over two ordered observations:

Wα
X(x) = (1− γ)xj + γxj+1, (3.21)

where the weight is given by γ = (n − 1)α − j + 1, and the index is
j = ⌊(n − 1)α + 1⌋, with n being the sample size (Hyndman et al. 1996;R
Core Team 2022).

At each forecast issuance time, the WQE-model forms, for a specific lead
time k and target time t, a sample quantile estimate based on the members of
the set of NWP PCs Cj,1:M

t|t−k :

q̂α
t|t−k = Wα

Cj
t

(Cj,1:M
t|t−k ). (3.22)

We then make the assumption that the members of the set of NWP PCs, Cj,1:M
t|t−k ,

can be seen as sample realizations of the same underlying variable Cj
t that we

want to model. The WQE model for the PC temperature quantile forecast task
then utilizes the estimate q̂α

t|t−k directly as an input, qα
t|t−k, in a forecast of the

jth principal component at quantile α:

Cj,α
t = qα

t|t−k. (3.23)

The error term here is left unspecified, and we make no assumption with regard
to its distribution in the modelling itself, like in the case of quantile regression
described below. The performance of this model is detailed in Section 6.2.

Quantile Regression

Quantile Regression (QR) is a standard modelling approach where instead
of modelling the conditional expected value based on a set of covariates, we
can instead utilize these covariates to model a range of conditional quantiles
(Koenker 2005). This approach provides a more complete picture of the relation
between variables, especially when said relation differs at different levels of
the response (Cade et al. 2003). At each α-quantile QR models describe the
conditional quantile realizations as a linear combination of covariates. For a
response variable, y ∈ Rn, and a design matrix X, the quantile regression model
is given as:

Qα
yt

(X) = Xβα. (3.24)
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3.5. Re-weighted Quantile Estimation

The β-coefficients, which are specific to each quantile α, are then found by
minimizing the pinball loss function (see also Section 3.8) given by:

ρα(x) = x(α− Ix<0)

=
{
xα, if x ≥ 0;
|x|(1− α), if x < 0.

(3.25)

Specifically for the regression task we look at minimizing the difference between
the observed yt and the linear predictor ηt = xtβ:

β̂α = argmin
β∈Rk

n∑
t=1

ρα(yt − xtβ). (3.26)

In this manner quantile regression minimizes a sum of asymmetric penalties
(Koenker 2005). The QR-model offers a semi-parametric structure of the
estimates. While the deterministic part can be described in terms of model
parameters (quantile specific β-coefficients), the error term ϵt is not assumed
to take on any specific distributional form. This is advantageous for forming
prediction intervals, e.g. compared to OLS, in cases where the error departs
from the assumed distribution (Cade et al. 2003).

In Section 6.3 we will, again for the purpose of modelling PC temperature
quantiles, explore a set of quantile regression models at target time t, for a
specific lead time k, of the form:

Qα
Cj

t

(xt, q
α
t|t−k) = β0 + f(xt) + h(qα

t|t−k), (3.27)

where f(xt) is a function of time covariates (e.g. hour, month, etc.) which may
include interaction terms, and the inputs, qα

t|t−k, are the WQE-output described
in the previous section. In the linear case we have h(qα

t|t−k) = β1q
α
t|t−k. This

parametrization will allow us to explore to what degree the WQE-estimates
should be adjusted for improving forecasting performance. We will also look
at a spline version of h(·). In this case the splines were implemented through
the bs-function from the splines-package, which flexibly fits each quantile by a
piecewise cubic polynomial procedure (Koenker 2005).

3.5 Re-weighted Quantile Estimation

NWP forecasts are issued once monthly, and (as we will demonstrate in Chapter
6) at the hourly level performance with regard to forecasting temperature PCs
degrades fairly rapidly. Substantial short term improvements can be achieved,
however, by re-issuing a modified version of the forecast, at time point R, based
on a quantile re-weighting procedure. In this manner we can ‘regain’ forecast
skill before a new, proper, forecast is issued. This re-weighting is available at
any time point as it only relies on the r most recently observed temperature
PCs at hand, and can be repeated as many times as desired.

The idea is to adjust the set of NWP principal components according to their
performance during the last r time points for which we have observed realizations.
For this purpose we utilize a standard weighting scheme. The weight for NWP
ensemble member m is based on the squared distance between the observed
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3.5. Re-weighted Quantile Estimation

and forecasted PC. The adjustments, then, are based on information from the
level of expected value of the output, but is performed at the level of a specific
quantile. The best predictors of the expected value are weighted upwards, and
the worst are weighted down. We are in a way shifting the distribution of
the NWP forecast members closer to the observed values by filtering out the
contribution of the worst performing members.

The re-weighting procedure consists of two parts and is described in algorithm
2, where the second part follows the general outline of Akinshin (2023). The
first part concerns finding what we refer to as the importance weights.

Let R be the last time point for which we have observed temperature data,
and let it also mark the re-issuance of the forecast. The importance weights,
wm

R , for an individual member m, is then found by summing over a re-weighting
interval with length r:

wm
R =

R∑
t=R−r+1

−1
2γ(Ct − Ĉm

t|t−k)2. (3.28)

The tuning parameter γ controls the overall size of the weight adjustment and
the process of finding a good value for γ is detailed in Section 6.4. Notice that
the acquired weight only references the re-issuance, at time point R, not any
specific future time point. This reflects that we apply the same weights to all
relevant target time points t > R. This is done under the assumption that the
trajectories of the best performing NWP members will continue to reflect the
temperature distribution more accurately than the unweighted ensemble as a
whole. In Section 6.4 we test for how long this assumption holds.

The importance weights for each member is collected in a vector, wR =
(w1

R, ..., w
M
R )T , before being normalized through a softmax function. To ensure

numerical stability we also include a maximum value subtraction. For each
member we find the normalized importance weight:

w̄m
R = exp{wm

R −max(wR)}∑M
m=1 exp{wm

R −max(wR)}
. (3.29)

These importance weights quantify how well each NWP member performs
estimating the observed PC relative to each other.

From here one could easily obtain a re-weighted quantile estimate through
a single order statistic. After sorting the member values in ascending order,
one lets the corresponding weights follow the same order. The weight index is
then found as m∗ = inf{s :

∑s
i=1 w

i ≥ α}, and the quantile value estimate is
given by qα = Cm∗ . Because the quantile is selected directly from the ensemble
the obtained estimates might differ considerably from the true underlying
distribution, especially for small sample sizes (Akinshin 2022). Though our
sample size of ensemble members is not particularly small, ranging between
50-200 depending on forecast month, the effective sample size can be much
smaller as a results of the weighting process. If a substantial number of weights
are close to zero the single ordered statistic will decrease in accuracy. In order
to ensure good quantile estimates we will instead utilize a weighted sum of all
order statistics.

Our approach therefore centers around finding the contribution weights, w̃m
R ,

which specifies the contribution of each NWP member to the estimation of a
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3.5. Re-weighted Quantile Estimation

specific quantile. The contribution weights will sum up to 1, so we build the
re-weighted quantile, q̃α

t|t−k, up as a weighted sum from the values of the input
and the member specific weight:

q̃α
t|t−k =

M∑
m=1

w̃m
RC

m
t|t−k. (3.30)

The contribution weights are found by applying a weighted quantile estimation
function. We utilize the Harrell-Davis quantile estimator (Akinshin 2023),
which has a higher statistical efficiency than single order statistics. It is also
especially suited for light-tailed distributions (Akinshin 2022), such as the
normal distribution, which is the assumed distribution of the ensemble after
post-processing.

The estimator is based on the beta distribution, whose PDF is defined over
the support x ∈ [0, 1] as:

Beta(a, b) = 1
B(a, b)x

a−1(1− x)b−1, (3.31)

where B(a, b) is the beta function. Based on the desired α-quantile we can
specify the parameters as a = α(n∗ + 1) and b = (1 − α)(n∗ + 1). This will
yield a smooth uni-modal density curve with the mode close to α,2 but slightly
adjusted by Kish’s effective sample size n∗ = (

∑M

i=m
w̄m

R )2∑M

i=m
(w̄m

R
)2

. The adjustments
are larger for smaller sample sizes and will drag the mode from the quantile
in the direction away from the median. The size of the performance weights
for each member are then used to divide the support of the distribution into
M intervals. For ordered member m the lower interval border along the
support is formed as lm =

∑m−1
j=1 w̄j

R, which is the sum of the normalized
performance weights up to and including the previous member. This applies
to all members expect the first, where we have l1 = 0. For the upper border
we have um = lm+1. The contribution weight of a member is then found
as the area under the density curve, over the support designated by its
interval. It can be obtained through employing the regularized incomplete
beta function: Ix(a, b) = 1

B(a,b)
∫ x

0 ta−1(1− t)b−1 dt, which also is the CDF of
the beta distribution. In this manner the contribution weight of a member is a
function of the performance weight, the sample size, and ‘roughly’ its proximity
to the desired quantile, and is given by (Akinshin 2023):

w̃m
R = Ium

(a, b)− Ilm
(a, b). (3.32)

We describe the application of the re-weighted quantiles in Section 6.4. Note
that the re-weighted models will be identical to the previously described WQE
and QR-models expect for using the re-weighted quantile, q̃α

t|t−k, as input
instead of the qα

t|t−k.
Through the fact that we are adjusting forecast outputs based on new

observations the re-weighting method we employ here bears some resemblance
to both Brajard et al. (2023) and Schuhen et al. (2020). There are three major

2The mode of the Beta distribution for our specification of a and b is given by
a−1

a+b−2 = α(n∗+1)−1
α(n∗+1)+(1−α)(n∗+1)−2 = α(n∗+1)−1

n∗−1 .
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3.6. Aggregated Quantile Estimation by Gaussian Copulas

Algorithm 2 Find Re-weighted Quantiles

1: Input: Ct , Ĉm
t|t−k, R, r, γ, α.

2: for m = 1 to M do
3: wm

R ←
∑R−1

t=R−r −
1
2γ(Ct − Ĉm

t|t−k)2) ▷ Find performance weights.

4: wR ← (w1
R, ..., w

M
R ) ▷ Form vector of performance weights.

5: for m = 1 to M do
6: w̄m

R ←
exp{wm

R −max(wR)}∑M

m=1
exp{wm

R
−max(wR)}

▷ Normalize performance weights.

7: a, b← α(n∗ + 1), (1− α)(n∗ + 1) ▷ Specify quantile through Beta
-parameters

8: for m = 1 to M do
9: lm ←

∑m−1
j=1 w̄j

R ▷ Find lower interval endpoint.
10: um ← lm+1 ▷ Find upper interval endpoint.
11: w̃m

R ← Ium
(a, b)− Ilm

(a, b) ▷ Find contribution weight.
12: q̃α

t|t−k ←
∑M

m=1 w̃
m
RC

m
t|t−k ▷ Form re-weighted quantile.

13: Output: q̃α
t|t−k

differences, however. First, we perform the weighting based on observations in
principal component space as opposed to at the level of grid point observations.
Second, our approach is lead time agnostic, while the other approaches are lead
time specific. And third, our approach involves applying the weights directly
to the ensemble members to form quantiles. In contrast, Brajard et al. (2023)
is concerned with estimating a posterior density function for the model state
given new observation, while Schuhen et al. (2020) performs adjustments to the
underlying distribution parameters.

3.6 Aggregated Quantile Estimation by Gaussian Copulas

As we have mentioned, when forecasting PC temperature utilizing NWP data,
forecast skill at the 6-hourly level disappears after around 15 days (see also
Section 6.3). It is, however, possible to make model skill manifest at longer lead
times by employing temporal aggregation methods (Nystrup et al. 2021). An
intuition for the application of forecast aggregation can be given from Jensen’s
inequality applied to a linear combination of random variables. For a convex
function f(·), Jensen’s inequality states that the function of a linear combination
is less than or equal to the linear combination of that function applied to each
of the elements in the linear combination. If we then take the expected value
on both sides of the inequality we obtain:

E[f(x1 + x2)] ≤ E[f(x1)] + E[f(x2)]. (3.33)

In our case f(·) is a convex loss function, and from (3.33) we have that the
expected loss of an aggregate is less than the sum of the expected loss applied
to each observation. Obviously, this holds for the output of baseline models
as well as for any models of interest. If, however, the model is skillful then
the amount of loss reduction is greater for the model of interest than for the
baseline reference model.
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Our aggregation method of choice is the Gaussian Copula (GC) method. To
motivate its use we first consider a naive aggregation approach. The quantile
estimators described in the previous sections have at time t estimated quantile
α of the random variable yt by a partial estimation (i.e. at quantile α) of the
inverse cumulative function F−1

t , on this pattern:

ŷα
t = F̂−1

t (yt, α). (3.34)

However, the elements of the sequence {ŷα
t }T

t=1 are not independent of each other,
but form a correlated time series. After having obtained these predictions we are
interested in estimating the quantile of a summary statistic, e.g. the aggregate
Sα

1:T = (
∑T

t=1 yt)α, over an interval of time points, t = {1, ..., T}. Consider,
then, the naive post-hoc quantile estimator of a simple linear combination
of α-quantiles over the interval of interest utilizing the previously obtained
predictions:

Ŝα
1:T = ŷα

1 + ŷα
2 + ...+ ŷα

T . (3.35)

Even if the individual ŷα
t is a good estimate of the marginal quantiles at each

target time, the sum of the quantiles cannot be used directly to estimate the
quantile of the summary statistic. This is because it ignores the underlying
correlation structure between yt at different time points. Whereas the predicted
quantiles will lie close to α, the realizations of yt will be spread around according
to their distributions. This means that the degree to which they line up
is dependent on the correlation structure between the variables. This can
readily be shown through simulation. Consider four scenarios where in each
we simulate (m = 1000) from a bi-variate standard normal distribution with
mean 10, with different correlation structures (ρ = -0.5, 0, 0.25 and 0.95). In all
scenarios (Figure 3.1), except for the nearly perfectly correlated one, the post-
hoc estimator over-estimates the values of high quantiles and under-estimates
the values of low quantiles. Notice also that the behaviour at the 0.5-quantile
is unproblematic. This is to be expected in symmetric distributions like the
standard normal where the mean and median are close.

This means that if we want to estimate quantiles over aggregated intervals
we ought to take account of the correlation structure within the predictive
distribution between time points. For this purpose we will follow an approach
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Figure 3.1: Plots comparing the sum of the quantiles (yα
1 +yα

2 ) with the quantiles
of the sum Sα = (y1 + y2)α for four values of correlation (ρ) between y1 and y2.
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centered on utilizing Gaussian Copulas to describe the dependence structure
between the variables within the interval of interest (Pinson et al. 2009; Möller
et al. 2013).

For this section, for expositional convenience, we break with the above
established notation and use capitalized letters to denote random variables.
Consider T random variables X1, ..., XT each with continuous marginal
cumulative distributions Ft(Xt). The joint cumulative distribution of the
realisations, F (x1, ..., xT ), can be decomposed by applying the probability
integral transform Ut = Ft(Xt):

F (x1, ..., xT ) = P(X1 ≤ x1, ..., XT ≤ xT )
= P(F1(X1) ≤ F1(x1), ..., FT (XT ) ≤ FT (xT ))
= P(U1 ≤ F1(x1), ..., UT ≤ FT (xT ))
= P(F1(x1), ..., FT (xT ))
= ξ(F1(x1), ..., FT (xT )).

(3.36)

The decomposition of the joint cumulative distribution yields two components:
the marginal cumulative distributions, Ft(xt), and the copula, ξ(·), which
is the joint cumulative distribution over the marginals. It is a multivariate
distribution function over marginal distributions that are uniformly distributed:
Ft(xt) = ut ∈ [0, 1]. By Sklar’s theorem the representation (3.36) is available for
any joint cumulative distribution F (·) (Salinas et al. 2019). While the copula
captures everything about the dependence structure between the component
variables X1, ..., XT , the marginal describes the distribution information
particular to each Xt.

In our case we will induce the correlation structure through the use of
Gaussian Copulas (GC). Employing GC is convenient as it only requires the
marginals, Ft(·), and the correlation matrix of the joint CDF to be fully defined
(Möller et al. 2013). Now, assume that we are in possession of the marginal
Ft(Xt). We can then obtain the latent factor Zt = Φ−1(Ft(Xt)) through
applying Φ−1(·), the inverse CDF of the standard normal distribution. Let us
then consider F (·|Σ), the same joint cumulative distribution as above. But,
we now assume that the correlation structure between each Xt is captured
through some Σ, a T × T correlation matrix. A Gaussian copula for the joint
distribution can then be written as:

F (x1, ..., xT |Σ) = ξ(F1(x1), ..., FT (xT )|Σ)
= ΦT (Φ−1(F1(x1)), ...,Φ−1(FT (xT ))|Σ)
= ΦT (z1, ..., zT |Σ),

(3.37)

where ΦT (·|Σ) is the CDF of a multivariate normal distribution with mean 0,
and correlation matrix Σ. The Gaussian copula is a function from RT to the unit
hypercube [0, 1]T , that preserves the uniform marginals (Tedesco et al. 2023).
By applying a Gaussian copula structure we are re-framing the assumption made
above on the correlation structure between each Xt. We are now assuming that
the correlation can be captured as a parameter in the distribution of the latent
factor variable Z = (Z1, ..., ZT ) ∼MVN(0,Σ). This is the simplest assumption
on the dependence structure for latent variables (Pinson et al. 2009), and is
chosen for convenience.
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3.6. Aggregated Quantile Estimation by Gaussian Copulas

Algorithm 3 Estimate Correlation Matrix
1: Input: xl∈τ , cl∈τ , τ
2: F̂−1

l∈τ ← Q(xt∈τ ) ▷ Make 6-hour level prediction CDF.
3: for l = 1 to L do
4: ul ← F̂l(cl) ▷ Find in-sample observed quantile.
5: zl ← Φ−1(ul) ▷ Transform to standard normal.
6: Zm×|τ | ← zl∈τ ▷ Form matrix of latent Gauss. factors.

7: Σ̂← 1
n−1

∑n
t=1

(zt−z̄)(zt−z̄)T

ssT ▷ Estimate correlation matrix.
8: Output: Σ̂

The advantage of this structure is that it provides a manner of estimating
the correlation matrix in a way that does not rely directly on the properties of
the individual marginal distributions. Once the correlation matrix is estimated
we can sample from it and obtain (through a back-transformation) any desired
aggregate which we in turn can find a quantile estimation of.

Now, our concern is to estimate the α-quantile of an aggregate over an
interval of correlated variables. For the random variable Ct of PC temperature
at target time t we write this as Sα

1:T = (
∑T

t=1 Ct)α. Required for this is finding
the correlation structure across some interval of the predictive distribution
which we want to aggregate over. The estimation of the correlation must be
based on more than one interval, however. It could be based on any collection
of d intervals of length T . Our choice is to look at the correlation over lead
time intervals across forecast issuance months. This is done mainly because
it simplifies the estimation structure in a way that aligns with the forecasting
set-up (which is based around monthly forecast issuance). To make clear that
each marginal (in our case) is lead time specific, we use the notation Fl(·) to
denote the marginal for any target time t with lead time l relative to some
forecast month m, and similarly Fl∈τ (·) to indicate a set of marginals covering
lead time interval τ .

Additionally, each marginal must be estimated from data. For this
purpose we use the QR-model (Section 3.4), which can provide us with a
predictive distributions set on the form of (3.18) over a range of probabilities:
F̂l(·) = {q̂αi

l |0 < α1 < . . . < αm ≤ 1}. The effect of the granularity of this set
will be investigated in Section 6.5. We can then formulate the Gaussian copula
for our case as:

F (c1, ..., cL|Σ) = ΦT (Φ−1(F̂1(c1)), ...,Φ−1(F̂T (cL))|Σ). (3.38)

The processes of estimating the correlation matrix for a given forecast month,
m, is given in algorithm 3. The first step consists of estimating the inverse
marginal distributions F̂−1

l∈τ (·) based on some training data xl∈τ . Next, for each
lead time l, we obtain the observed quantile location, ul = F̂l(cl), by checking
where within the predictive set the observed PCs are located. From this we form
a matrix of latent Gaussian factors which we can easily estimate the correlation
matrix from.

After having estimated the correlation matrix we go on to obtain estimates
of the quantile aggregates of a predictive distribution (Algorithm 4). In contrast
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Algorithm 4 Find Aggregated Quantile Estimate

1: Input: Σ̂.
2: z(1), ..., z(M) ← MVN(0, Σ̂) ▷ Sample M obs. from MVN distribution.
3: for i = 1 to M do
4: u(i) ← Φ(z(i)) ▷ Back-transform to find quantile locations.
5: y(i) ← F̂−1

l∗ (u(i)) ▷ Find simulated realization
6: S

(i)
1:L ← y

(i)
1 + ...+ y

(i)
L ▷ Form aggregate over lead time interval.

7: Ŝα
1:L ←Wα(S(1)

1:L, ..., S
(M)
1:L ) ▷ Find α-quantile of aggregate.

8: Output: ŝα

to Algorithm 3 which applies the predictive distribution set backward on the
training set, we are now only interested in applying it forwards to new forecasted
values.

We first simulate M samples z(i) = (z(i)
1 , ...z

(i)
L ) from the multivariate normal

distribution utilizing Σ̂, the estimated correlation matrix found in algorithm
3. Then, for each sample, we back-transform the simulated values using Φ(·)
to obtain u(i) ∈ [0, 1]L, a vector of simulated quantile locations. These in turn
inform us where in the predictive inverse CDF the simulated realizations, y(i),
can be found. Now, the simulated u(i)-vectors are only specified with regard to
a lead time interval, but not to any target time. The predictive distribution,
however, is target time specific. We denote this as F̂−1

l∗ (·), letting the star
indicate that we are forecasting a new observation at lead time l. Each y(i) is
a simulated realization of the predictive distribution over a lead time interval
based on: i) the marginal distributions estimated by our model; and ii) the
estimated correlation structure between lead times. From these we can form a
set of M aggregations. And at last, we can estimate the quantile of interest
based on the set of aggregations using the WQE quantile estimator (6.2):

Ŝα
1:L = Wα(S(1)

1:L, ..., S
(M)
1:L ). (3.39)

3.7 Evaluation Procedures

In this section we will describe our evaluation procedures. We will first describe
the Prequential Cross-Validation (PCV) procedure that we will employ in all
our model evaluation scenarios. We will then discuss the inclusion of a hold-out
set and the model selection process.

Cross-Validation (CV) is the most common method employed for model
assessment and selection within the field of machine learning (Hastie et al. 2009).
The standard K-fold CV involves first splitting the data into K folds. Then
for each k one sets aside the kth fold for testing while one fits the model on
all other folds. The performance of the model can then be found by averaging
results across all K test sets.

In the case of time series forecasting it has been noted that because
observations are not independent, standard CV is theoretically inadequate
(Cerqueira, Torgo and Soares 2023). This notwithstanding, it has been showed
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to perform well in specific settings, i.e. for purely auto-regressive models without
correlated errors (Bergmeir et al. 2018). In time-series forecasting, several types
of CV have been employed in addition to standard CV. These include variants
of the following procedures: ‘hold-out’ (one split); ‘blocked CV’; LOOCV and
PCV (Cerqueira, Torgo and Soares 2023; De Felice et al. 2015).

The approach we have followed is the Prequential Cross-Validation (PCV)
method. PCV centers around the idea of forecast intervals, in our case forecast
months. This method also goes by the name ‘sequential’ CV, or, highlighting
its prominence, simply by ‘time-series CV’. Suppose all available data can be
ordered by month. For a given forecast month, m, in a sequence of forecast
months, we form the training data based on the preceding forecast months up
to but not including m. Employing the training data, we make a forecast which
we test on month m. We then incorporate the test data from month m into
the training data we use to fit a model for forecast month m+ 1. In this way
previous test sets are continuously incorporated into the training data. The
results are reported as an average over all test sets. There are several versions
of prequential CV, distinguished from each other by the length of the training
window and the gap between the last training observations and the first test
observation (Cerqueira, Torgo and Soares 2023). In Section 5.5 we will look at
the sensitivity of the results based on using different training window sizes.

In contrast to the standard CV, the splits in PCV are not random, but
follow a monthly order. In addition, a subset of the earlier months will never
be tested on, while the last months might only be part of the training set for a
limited set of months. The earlier months may also have an out-sized effect on
the fitting process since they (depending on the application) might be part of
all or many of the training sets.

The PCV method has several advantages. First, like other CV methods, it
keeps training and test sets separate. More importantly for our case is that the
sequential CV mimics the way a model would be deployed in a real life setting,
where we at each month train on all relevant data up to forecast issuance. The
results would then serve as a counterfactual estimation of how well a model
would have performed if we had deployed it throughout a sequence of forecast
months. This is of high practical utility for stakeholders as it provides an
intuitive way of understanding results. An additional practical advantage is
that the NWP temperature forecasts also follow a monthly sequence, which
makes them fit in seamlessly in our evaluation structure.

In addition to employing cross-validation for the purpose of model assessment,
results are sometimes reported for a hold-out set. Within the literature there
is a noticeable ambiguity with regard to this. On the one hand, you have the
standard machine learning approach where the data is divided in three parts:
training, validation, and test sets. The standard CV approach would then mix
the first two sets, and then evaluate final modal performance on the last separate
test, or hold-out, set (Hastie et al. 2009). In the energy demand literature,
the paper Bala et al. (2022) is an example of this. They report results for a
hold-out period after having built and tested their model using regular CV.

The literature more specific to time-series cross-validation, on the other
hand, in general sees the hold-out set as an alternative to CV, indeed as a
specific form (CV with one split). It is unclear whether they intend for another
hold-out set to be used for final model assessment. Within demand forecasting
this approach is followed by De Felice et al. (2015), who only report results for
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the leave-year-out-CV and not for any hold-out.
The attractiveness of the hold-out-set as a final evaluation in the standard

machine learning case lies in it being an independent assessment of model
performance based on randomly drawn observations. In the case of sequential
models, however, the observations in the hold-out set would not be random, but
possess a specific time signature. In the case of both demand and temperature
forecasting, performance by month is subject to substantial fluctuations.
Suppose we had a hold-out set, e.g. composed of observations over a year
(which seams appropriate in the demand forecasting task which has 10 years of
data). Such a set would not give information about the performance of, e.g.,
randomly drawn January observations, it would only give information about a
very specific January that might exhibit anomalous tendencies that could skew
the results. For an example of month-by-month variation in performance (see
Section 5.5). A more reliable assessment of model performance would be an
average over all forecasting periods we have tested on, i.e. the PCV results.

Furthermore, the time signature might be what we are the most interested
in learning about in relation to model performance. In our case we want good
estimates for model performance for specific months and specific lead times.
And averaging over lead times across a substantial number of test sets provide
more stable results than relying on a single hold-out set. In short, the hold-out
set does not accurately reflect the properties we want for the model evaluation,
and we will therefore, like (De Felice et al. 2015), only report results obtained
over the PCV test periods.

An effect of this is that the model selection and the final model evaluation
is performed on the same test data. These are separate problems (Hastie et al.
2009). Within the time-series domain, attention has been given to the studying
how well different CV methods estimate predictive performance (Bergmeir et al.
2018; Cerqueira, Torgo and Mozetič 2020). But until recently little work has
been done on studying how well different CV-procedures does in selecting model
predictors (Cerqueira, Torgo and Soares 2023). Our approach to model selection
has centered around a two-step selection process using the PCV procedure for
evaluating results. We have first tested different parametrizations of a relatively
small number of time covariates, which we have had good reason to include in
our model. We have then combined these with temperature information either in
the form of mean grid temperature or in the form of principal components. This
approach was motivated by two aims. First, to obtain good predictive ability,
and second to gain insight into how the addition of specific predictors changed
forecasting performance. We have especially been interested in obtaining a
good parametrization of time covariates in order to properly gauge the effect of
including temperature information on predictive performance. The approach
could be made more robust with a more involved model selection procedure.

Predictive performance is, however, not the only model selection criteria
we will employ. In building a model we also consider it important for the
model to be reliable, interpretable, parsimonious, and stable. Reliability is
especially important for stakeholders which depend on model output. If the
model gets too complex to be fitted every month, then it is of no practical use.
An important indicator of a good model is also that it exhibits stable results.
Specifically that it will perform relatively robustly with regard to different data
inputs and small tweaks of the data. Interpretability is important for getting
stakeholders to trust the model. If transparent reasons can be offered for why
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a specific forecast is given, then it might increase the reliance on the model
in practical settings. An interpretable model often also simplifies the model
structure, making it more parsimonious. In our case we have large amounts of
data, and many moving parts. In such a setting, any simplification of the model
structure that does not come at a huge cost in accuracy might be beneficial for
both computational and data-handling issues.

3.8 Evaluation Metrics

The main evaluation metrics that we will employ in this thesis are the following:
root mean squared error (RMSE), skill score, pinball loss, and an approximation
of the continuous ranked probability score (CRPS). Their formulas are given
below.

Root Mean Squared Error (RMSE)

With regard to the structural demand task we employ the root mean squared
error as our main evaluation metric. For forecasted value ŷt, and observation
yt, the RMSE is given as:

RMSE(ŷt, yt) =

√√√√ 1
n

n∑
t

(ŷt − yt)2. (3.40)

Pinball Loss

In the probabilistic forecast setting we are estimating quantiles. This requires a
different accuracy measure than estimating expected values. A standard error
metric for this task is the pinball loss, a proper scoring rule, which is a measure
of how good the quantile estimate is. For a quantile of interest α ∈ [0, 1],
predicted value, ŷt, and observed value yt, the pinball loss is defined as:

ρα(ŷt, yt) =


(yt − ŷt)α, if ŷt < yt,

0, if ŷt = yt,

(ŷt − yt)(1− α), if ŷ > y.

(3.41)

This loss function derives its name from the way the loss curve points in different
directions, which resembles the arms of a pinball machine. What makes pinball
loss suitable for quantile prediction is that, except for the case q = 0.5, where
it reduces to the absolute error, it will penalize under- and over-prediction
differently. Like the absolute error, the worse the prediction is, the bigger the
penalty. Additionally for values of q strictly over 0.5 the penalty for predicting
over the observed value will be higher, and vice versa for q < 0.5.

A well-behaved forecast at high quantiles ought to have a sizeable proportion
of its predictions above the observed value thus receiving low penalties.
Correspondingly for low quantiles a higher proportion will be lower than the
observed value, again receiving low penalties. Closer to the median a well-
behaved forecast should be more evenly spread around the observed value, thus
receiving a penalty multiplier closer to 0.5 across the board.
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Skill Score

For model comparison we use the skill score, a relative measure, frequently
used to compare model performance with respect to a competing baseline or
reference model. The skill score, SS, for models evaluated by RMSE is given by:

SS = 1−
(

RMSEforecast

RMSEreference

)2

, (3.42)

The skill score for models evaluated by pinball loss is given by:

SS = 1− ρα
forecast

ρα
reference

. (3.43)

Any improvement over the baseline or reference model results in a skill score
above 0. The limit case where MSE of the model of interest approaches 0 and
the reference model is constant, the skill score is 1. The baseline models we
will use are detailed for each specific problem in Sections 5.1 and6.1.

CRPS

To evaluate the performance of a predictive distribution set across quantiles we
utilize an approximation of the continuous ranked probability score (CRPS),∫

0,1 ραdα, in the following manner:

CRPS ≈ 1
9

0.9∑
α=0.1

ρα, (3.44)

where α ∈ {0.1, 0.2, ..., 0.9}. See also Gneiting et al. (2007).
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CHAPTER 4

Data and Programming

The main data utilized in this thesis comes from three sources: 1) the Nord
Pool electricity demand volume data for the Nordic region;1 2) the ERA5
temperature data provided in grid form over Northern Europe; and 3) the
NWP weather forecast data over the same grid. In this chapter we provide a
description of the data, presenting its key characteristics as well as detailing
pre-processing steps. In Section 4.1 we describe the response variable for our
main model: electricity demand. This includes a presentation of its cyclical
trends. Then, in Section 4.2, we give an overview of the ERA5 temperature
data. We will first describe properties of its original grid form, before presenting
key characteristics of its principal component form. We discuss the selection of
PCs, and put special emphasis on the two first, which will form a key aspect of
our modeling. In Section 4.3 we describe the structure and pre-processing steps
involved in gathering the NWP forecasts. Finally, we provide a brief overview
of the data structure as a whole.

4.1 Nord Pool Electricity Demand Data

Like we saw in Section 2.1, other electricity demand forecasting studies have
utilized ‘electricity load’ (De Felice et al. 2015; Mirasgedis et al. 2006) , or
‘electricity consumption’ (Bala et al. 2022) as their response variable working as
a proxy for demand. In our study we have used the slightly different ‘electricity
demand volume’ (measured in MWh) as our response variable. The data is
gathered from Nord Pool, a private joint-stock market exchange operating
in Northern Europe. Their day-ahead market is a closed auction with over
300 buyers and sellers placing bids on energy delivery for the next day (Nord
Pool 2023). The buyers are typically representatives of electricity providers
purchasing on behalf of customer need. The demand volume is the sum total of
successful bids for a set region, in our case the Nordic region. Nord Pool also
refers to this as ‘turnover at system price’. As such, it is an indirect estimate of
customer energy demand. To what extent the actual consumed energy differs
from demand has not been investigated, but we do not expect large discrepancies
between these.

1The Nord Pool electricity demand data encompasses 7 countries: Norway, Sweden,
Denmark, Finland, Estonia, Latvia and Lithuania, for simplicity referred to as the Nordic
region.
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4.1. Nord Pool Electricity Demand Data
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Figure 4.1: Plots of Nord Pool energy demand (Jan 2013 - Jan 2023) showcasing
the annual, weekly and daily demand cycles. The density plot as well as the
short cycles are broken down by season. The red line in 4.1a indicates the
hourly trend with β1 = 0.03.

The demand data have only been subjected to very modest pre-processing.
The raw inputs contained missing or doubled observations connected to daylight
savings time changes. This was fixed by shifting observations during summer
back one time step, in effect cancelling summer time adjustment. This creates
a complete time series without missing data, which as a bonus lines up with
the temperature and forecast information.

The main descriptive statistics of the demand data are provided in Table
4.1. Over 121 months (Jan-2013–Jan-2023) we have 88392 hourly spaced
observations ranging between 22211.6 and 65311.1 MWh. In Figure 4.1b
we see the distribution of all demand observations contrasted with the same
distribution decomposed by season. The whole distribution is uni-modal, light
tailed, and right-skewed. There are considerable seasonal differences. The
summer and winter distributions only have a small overlap, while the spring
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4.2. ERA5 Temperature Data

Data Min 1st Q Median Mean 3rd Q Max Unit
Demand 22211 35586 40167 41353 46982 65311 MWh
ERA5 225 274 278 278 282 308 K

Table 4.1: Summary statistics for electricity demand (Jan 2013 – Jan 2023) for
88392 hourly spaced observation in MWh, and ERA5 temperature (Jan 1979 -
Jan 2023) in K for 178 million grid points over 386448 time points.

and fall distributions are almost identical.
The demand observations exhibit a slight upward trend. A linear regression

(yt = β0 + β1t) over all demand observations, yt, by time t yields β̂1 = 0.03,
indicating a slight increase in electricity demand per time step within the
time period (see red line in Figure 4.1a). Using yearly mean values we also
run the model: ȳyr = β0 + β1yr. The coefficient estimate indicates a yearly
increase in the mean of 400.4 MWh. In both estimates we exclude the January
2023 observations as these only reflect a part of the annual cycle which would
exaggerate the upward trend.

In addition to the trend, the demand observations display three clear
cyclic structures: annual, weekly and daily. The annual cycle (Figure 4.1a)
shows demand rising each winter and sinking each summer. As has been
pointed out, this variation, in the Norwegian case, is largely driven by heating
installations reflecting outside temperature levels (Hofmann et al. 2019). Figure
4.1c demonstrates the hourly variation in demand. Demand is lower at night,
rises in the morning, and keeps roughly at the same high level between 8:00-
20:00, before again falling in the evening. In contrast to the annual cycle,
the daily cycle seems to follow a general societal activity pattern. If demand
only followed temperature (through heat installations) then demand would
increase at night when it is colder. We also observe a weekly cycle (Figure 4.1d)
where demand is fairly constant during the work week while falling considerably
during the weekend. It’s plausible this pattern reflects the weekly cycle of
economic activity. This suggests that we ought to include not only temperature
information in our structural demand model, but also a trend term, as well as
terms capturing the short cycles not directly related to temperature.

Both the daily and weekly cycles seem fairly similar across seasons, but there
are nuances. Notice for example the evening bump in demand during winter
which seems absent during summer. These differences become more pronounced
for more granular subdivisions of the annual cycle, e.g. using weeks or months
instead of seasons. In Section 5.2 we look closer at interaction combinations
between short cycle (daily, weekly) terms and an annual cycle terms (week,
month, season) within the context of the demand forecast model.

4.2 ERA5 Temperature Data

The ERA5 temperature data we utilize are produced by the Copernicus Climate
Change Service (C3S) which is part of the European Centre for Medium-Range
Weather Forecasts (ECMWF). It has also been through post-processing to
remove bias.
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Figure 4.2: Plots of correlation between temperature grid points. Figure 4.2a
shows the correlation between all grid points, while 4.2b shows the correlation
relative to one location (55◦N, 4◦E). Red indicates higher correlation.

The temperature observations, measured in Kelvin (K), span from 1.1.1979
to 31.1.2023, for a total of 386448 hourly spaced time points. At each time
point they cover 462 grid locations across a 21× 22 sized grid over Scandinavia
for latitudes 55◦ to 75◦ and longitudes 4◦ to 25◦. Together the observations
constitute 462 complete time series (after interpolating values for 2 missing
time points). Summary statistics are provided in Table 4.1.

The ERA5 temperature field exhibits a high degree of correlation, both
spatially and temporally. Across all time points we observe a high positive
correlation (ρ > 0.5) between any two grid points as can be seen in figure 4.2a.
Correlation increases with proximity and is lowest when grid points are located
further apart. This can be seen clearly in Figure 4.2a where the correlation
between location 55◦N, 4◦E (bottom-left) over the North Sea is plotted relative
to all other grid points. This plot is also a clear example of locations at sea
often having a higher correlation with each other than with grid points at land.
This correlation structure is so evident, in this case, that it clearly demarcates
the Scandinavian coastline.

The temporal correlation is very location dependent. This can be exemplified
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Figure 4.3: ACF plots (after differencing) of time series over a 2-week time
span.
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through plotting the auto-correlation structure (after differencing) for two grid
points over a time span of two weeks. We choose grid locations 55◦N, 4◦E
(over the North Sea), and 60◦N, 10◦E (roughly corresponding to Oslo) as they
exemplify fairly typical sea and land locations, respectively. In both plots
4.3a and 4.3b we see a clear daily cycle. Temperature at any given time is
correlated with observations at the same time of day even several days apart,
and negatively correlated with observations at the opposite time of day. The
correlation on land, however, is much higher than at sea. Compared to the
electricity demand data 4.3a, the correlation structures both at sea and on land
are weaker.

Principal Components of ERA5 Temperature Data

As we have seen, demand is expressed as a single continuous variable representing
electricity demand in the Nordic region. The highly correlated temperature grid
makes it difficult to ascertain what grid points should have the most effect on
demand. By employing PCA on the temperature grid, we do not have to rely on
any individual grid point. Instead, we create a small set of new variables that
describe most of the variation across the temperature field, which is used in the
demand models. Two widely used ways of selecting principal components are
the ‘cumulative percentage of variance’ method and the ‘scree graph’ method.
Both are ad-hoc rules of thumb ultimately relying on subjective judgement
(Jolliffe 2002). The ‘cumulative’ method sets a threshold (usually in the 70-90%
range) for the cumulative percent of the variance one wants the selected PCs
to account for. The last component, m, to be selected is the one that makes
the cumulative percent of the m first PCs exceed that threshold. Jolliffe (2002)
advises that if the first two components are especially dominant, a cut-off higher
than 90% may be necessary. The scree graph method relies on finding the
elbow of the plot of the variance of each PC. The last PC to be selected is the
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Figure 4.4: Scree plot of in-sample ERA5 temperature principal components,
with variance explained superimposed for the 15 first (out of 462) PCs. The first
PC is the most prominent explaining 84.2 % of the variance in the in-sample
temperature grid data.
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one with a ‘steep’ slope to the left and a ‘not steep’ slope to the right. An
alternative heuristic is to let the above-mentioned PC be the first not to be
selected (Jolliffe 2002).

Forming PCs based on all in-sample observations we see (in Figure 4.4) that
the first principal component is particularly dominant, representing 84.2% of
the variance of the temperature grid data over the whole in-sample period. The
elbow of the scree plot is clearly located at the second PC. Based on this we
should only select the first two PCs (alternatively just the first). But the scree
line does not completely flatten out. With regard to the ‘cumulative’ method
we have no reference threshold available, but given the dominant position of
the first component it seems advisable to set it higher than 90%. This would
mean to include at least the three first PCs. Since our primary objective is
predictive performance it seems apt to forego any conclusion for the moment
and instead subject the issue to cross-validation testing (Section 5.3). For this
purpose, we therefore set out to test the 10 first PCs. The choice of 10 allows
us to explore principal components that together account for almost all the
variation (97.1%) in the temperature data. At the same time, it represents an
extremely substantive dimensionality reduction, from 462 to 10.

The most important variance structures marked out by the first two PCs
are the overall temperature difference and the difference between land and sea
temperature. To exemplify these structures, we plot both the eigenvectors of the
first two PCs back on the grid coordinates of the original temperature data. In
Figure 4.5a we observe the first eigenvector. Even without the superimposition
of a map it is possible to make out the Scandinavian peninsula, as we observe a
gradual transition in the temperature structure between land and sea. From
the heatmap it is clear that all grid points have the same sign, indicating that
the eigenvector primarily points out the overall temperature in the Nordic
region. When projecting the first eigenvector onto the temperature observations
to form PCs, we project the average temperature per grid point. Large PCs
indicate colder temperatures, while lower PCs indicate higher temperatures.
The eigenvector corresponding to the second PC (Figure 4.5b) has a slightly
larger range of values. The land-sea demarcation is prominent, and is marked
by different signs. When projecting the second eigenvector, we are projecting
the land-sea temperature differential back on the observed temperature data.
The land-sea temperature differential might be an indicator of sea breeze (Steele
et al. 2014).

In Figure 4.6 we see the monthly distribution of the two first principal
components of ERA5 temperature. The first principal component has a monthly
variation that follows the negative of temperature (see Section 3.1). In winter,
when temperatures are low, the principal component value is high. It then
steadily decreases during spring and summer (as temperature increases) before
it continually rises from August to December. The monthly pattern for PC2
is not as clear, and the distributions have considerably less variation between
them. They can roughly be grouped in two. In the first half of the year the
distributions tilt slightly positive, whereas in the latter half the distributions
are centered around 0.

To illustrate the connection between the first PC and electricity demand,
we plot a spline fit over all in-sample observations (Figure 4.7). The relation is
clearly substantial and non-linear. The general trend is that when the principal
component value increases (corresponding to temperatures getting colder), the
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Figure 4.5: Heatmap of first and second eigenvector projected back on the
dimensions of the original temperature grid.
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Figure 4.6: Monthly distributions of first and second principal component over
all years.

demand increases almost linearly. But this trend does not hold for the lowest
values of the principal component (corresponding to high temperatures). After
a certain point, an increase in temperature does not translate into a decrease
in demand. The spline fit seems particularly suitable as it encapsulates the
shift in the relation occurring at around -100. But notice also that at any given
value there is a great deal of spread around the fitted line.
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Figure 4.7: Plot of first principal component vs electricity demand. The black
line shows the spline fit.

4.3 NWP Temperature Forecasts

In addition to the ERA5 temperature data (1979-2023), we also employ
temperature forecasts from four different seasonal NWP (Numerical Weather
Prediction) ensemble models: Météo-France, CMCC, DWD, and ECMWF. They
cover the period from January 1993 to January 2023. As seasonal forecasts
they are medium range coupled models integrating information both from the
ocean and from the atmosphere. NWPs increase long-term predictability by
latching on to information from large scale weather system phenomena that
are predictable on longer time scales, such as El Niño. Seasonal forecasts
incorporate larger and more complex interactions than sub-seasonal forecasts,
which utilize only atmospheric data (Vitart et al. 2019). After forecast issuance
the NWP outputs need to be post-processed to remove bias and variance issues.
A detailed overview of different post-processing methods is available in Hemri
et al.(2020).

At each forecast issuance the NWP forecasts number between 50 and 202
ensemble members for lead times k = {1, . . . , 500}, where each step is a 6-hour
interval. The notation specific to the NWP forecasts is detailed in Section 3.4.
We are primarily interested in the forecasts in the principal component form.
To obtain the principal components we employ Algorithm 1, detailed in Section
3.1. We use eigenvectors obtained from a decomposition of historical ERA5
from the period 1979-1992. This is done for convenience so we don’t have to
obtain the eigenvector at every forecast month.

We restrict ourselves to highlighting two central aspects of the NWP ensemble
members at the principal component level. The first is that the average PC

44



4.4. Programming Language, File System and Libraries

0

100

200

300

0 50 100 150 200
Ensemble Member

Lead Time 6 Hours

(a) 6 hours.

0

100

200

300

0 50 100 150 200
Ensemble Member

Lead Time 3 Days

(b) 3 days.

0

100

200

300

0 50 100 150 200
Ensemble Member

Lead Time 6 Days

(c) 6 days.

0

100

200

300

0 50 100 150 200
Ensemble Member

NWP Model

CMCC

DWD

ECMWF

MF

Lead Time 12 Days

(d) 12 days.

Figure 4.8: Plots showing the development of the first PC (shown along the
y-axis) for each NWP ensemble member over 4 lead times (6 hours, 3, 6, and
12 days) for an example month (Jan 1993).

value of the NWP ensemble seem to revert to a very general pattern after a
while. At the beginning of a given forecast period the average shows no specific
structure, but at lead times over 2 months there emerges a daily cycle in the
average. This should indicate that the forecasts at PC level seem to rely more
on the historic temperature cycles and less on other elements as lead time
increases.

The second aspect concerns that for each NWP model there is at the
beginning of every forecast month very little variation between members. In
Figure 4.8 we see the PC values for 202 members from all four NWP models.
At short lead times some models hardly have any variation between members.
As time passes, however, all four ensemble models show a large spread in the
PC values of the temperature forecasts.

In Figure 4.9 we provide an overview of the relationship between the data
structures. The outline shows the process involved in forming the demand
forecast which incorporates NWP PC temperature forecasts. It relates, first,
how we use the ERA5 data to form different sets of principal components
(see Section 3.1). Based on these we also form PCs for each NWP ensemble
member. Over the set of NWP PCs we find specific quantiles. These are used
to form forecasts of PC temperature, which we in turn utilise as inputs in the
demand forecast. The chart also shows the case where we are re-weighing the
NWP ensemble member contributions (Section 3.5). This is done based on the
NWP PCs of each ensemble member combined with recent observations of PC
temperature (indicated by the dotted line). Lastly, the figure shows how the
incorporation of additional data structures could be done, here exemplified by
stratospheric wind data (see also Chapter 8.

4.4 Programming Language, File System and Libraries

R

The programming for this thesis was done using the R version 4.2.1 and RStudio
version 2022.07.1 as the main coding interface locally. The main packages utilised
have been data.table for swift tabular data operations, mgcv for GAM-models,
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Figure 4.9: Flowchart of data pipeline.

qreg for quantile regression, parallel for multi-core parallelisation, and ncdf4
for reading data. The plotting has been done using base R, and ggplot2. The
density ridgeline plots were made using the ggridges package.

Computation

Through the math faculty at UiO I was granted access to high-performance
computing terminals ‘abacus-as’ and ‘nam-shub’. This enabled fast computation
through utilization of ‘embarrassingly parallelized’ code through the function
‘mclapply’ in R. As the name suggests, this is a basic form of optimization which
replaces iteratively performing tasks one by one in a for-loop by distributing them
to different cores. A requirement is that these tasks can be done independently
(Peng 2022). The R version used in this environment was R 4.2.0-foss-2021b.

Code Documentation / GIT

The code base is available on Github through the R package DemandForecast
at https://github.com/eirikhsj/DemandForecast. The magnitude of data makes
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it inconvenient to store on Github, but can be made accessible on the UiO
data science server upon request. For the models to run, several rounds of
data pre-processing have to be done. The package is made with the aim of
establishing core functionality, it is not optimized for speed.
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CHAPTER 5

Problem 1: Structural Demand
Model

In Section 3.3 we introduced the structural GAM-PC electricity demand model
and described the motivation behind utilizing it. In this chapter we direct our
attention toward three questions: 1) Assuming we have access to near-future
temperature observations, what model parametrization of the GAM-PC model
gives the most accurate forecast of near-future energy demand? 2) How much
does the inclusion of temperature contribute to increase predictive performance?
3) How well does this model compare to alternative implementations? The
overarching goal in this chapter, then, is to find and present the best GAM-PC
structural seasonal energy demand model and assess its merits.

For model evaluation purposes we use the PCV evaluation procedure
described in Section 3.7. Each model is trained on up to 5 years of training
data before each forecast issuance date and tested on 85 forecast periods issued
on the first of every month, from January 2016 to January 2023. The first
issuance months will have 3 years of data, then building to 5 years as we keep
rolling on. The effect of training period length is discussed in Section 5.5. All
models have the same outcome variable: hourly observed energy demand. The
evaluation metric is RMSE over each predicted hour between 15 and 45 days
from forecast issuance, and all models were fitted using the gam-function from
the mgcv package to allow for spline fits.

The models under consideration are based on two data sources: 1) time
covariates and 2) ERA5 temperature data either in the form of principal
components or as mean grid temperature. We have approached this as a
structural modeling task, where we model trend and seasonality as fixed effect
terms alongside temperature in a GAM model framework (Section 3.3). For
conceptual simplicity we have made an assumption of normal uncorrelated
errors.

The main challenge is finding the best combination of time and temperature
covariates. The full model space is large. Each of the six time covariates have
four different plausible parametrizations, not counting interactions, and we have
462 temperature measurements (stemming from the 22× 21 temperature grid)
and the same number of principal components. Combine this with an extensive
cross-validation procedure and it becomes apparent that a full exploration of the
model space is not feasible. However, the purpose of the principal component
decomposition is to reduce the dimensionality of the relevant data. We limit
our testing to the first 10 PCs, which together, over all data points, have an
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explained variance of 97.1% (Section 4.2).
This still leaves an enormous number of possible models. One option would

be to reduce either the size of the training data or the number of forecasting
test periods. The effect of training data size is explored in Section 5.5, but the
number of forecast test periods is desired to be kept high. More test observations
are especially important for month to month accuracy estimation. There is
considerable monthly variation in skill, and each month has one twelfth of the
test data, making month-evaluation susceptible to outlier months.

Instead of an exhaustive search, therefore, we have opted for a two
step procedure. We first look at the predictive performance of different
parametrizations of each covariate. Then, having found good parametrizations,
we combine them into more complicated multi-variable models (see Section 3.7).
Thus, consistency in prediction results over many forecast periods is prioritized
over a full exploration of the model space.1 This approach is obviously faster,
but another benefit is that we focus on a subset of the model space consisting
of plausible models it makes sense to compare with each other. And from these
comparisons we can ascertain where our prediction skill is coming from. The
downside is that we are not guaranteed to find the best model in the set.

The rest of the chapter is as follows. In 5.1 we first describe the two baseline
models, the intercept model and the climatology model, which are used as
benchmarks for modeling predictive performance for uni- and multi-variable
models respectively. Then, in Section 5.2, we describe the process through
which we find the best performing parametrization of the time covariates. The
best time covariate model is found to have a skill score of 0.42 compared to the
climatology model. In Section 5.3 we investigate models which only utilizes
temperature data. We find that the first principal component of temperature is
a more accurate predictor than the grid mean temperature.

We then, in Section 5.4, look at models combining time and temperature
information. The best model, GAM-PC1+2, includes both time covariates and
crucially, the two first temperature principal components, and gains a skill
score of 0.59 relative to climatology. In Section 5.5 we look at the factors
which contribute to the high score of GAM-PC1+2, and assess the impact
of changing the parameters of the training data. Finally, in Section 5.6 we
compare our model with Lasso and XGBoost implementations. We find that
the GAM-PC1+2 model performs slightly worse, but that it has key advantages
in terms of interpretability and parsimony.

5.1 Baseline Models (Intercept and Climatology)

A natural baseline is the intercept model, or the empirical average for all
observations before forecast issuance. Here, it is used to compare univariable
models to see if a single predictor offers any advantage compared to the simple
average. For observation at time t in an hourly sequence j with lead time l we
define the intercept model estimate for demand observation yt as:

ŷt = 1
t− l

t−l∑
j=1

yj . (5.1)

1Alternative procedures e.g. Bayesian Model Averaging or lasso could also have been
entertained, see also Section 5.6.
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In meteorology a more common baseline model is referred to as the climatology
or the climatological normal. It is an average, commonly set over a 30-year
range, of monthly, daily or hourly observations (Arguez et al. 2012; Wilks 2011).
For our purposes we refer to the climatology model as the empirical average
over all observations for a specific hour on a specific day of the year for all
preceding years. Formally, for observation yhdn on hour h, day of year d and
year n, the climatology baseline model estimate is given as:

ŷhdn = 1
n− 1

n−1∑
k=1

yhdk. (5.2)

It is a sensible choice of baseline for full models as it is relatively simple, and at
the same time it encapsulates both the daily and annual cycles of the demand
data.

5.2 Time Covariate Models

In this section we investigate the improvement in terms of predictive skill we
can obtain from a good parametrization of the time covariates.2 We will look at
four model categories: 1) univariable models, 2) multivariable models without
interaction terms, 3) bi-variable interaction models, and 4) multivariable models
with interaction terms.

From the hourly time series of energy demand observations, we have access
to date and hour information from which we can extrapolate weekdays, weeks,
months, seasons and years, all of which plausibly warrant inclusion.3 The main
challenge in utilizing the time covariates is to find the best parametrizations of
these features. Each of these covariates could be expressed in several different
ways – specifically as factors, as continuous variables, through splines, or by
sinusoidal terms.4

For each of the time covariates and for each parametrization of that covariate,
we fit a model using that covariate as a single predictor with energy demand
volume as the outcome. These models have the general form:

yt = β0 + f(xt) + ϵt. (5.3)

Here f(xt) is a function of a single time covariate and differs between
parametrizations in the following manner:

f(xt) =


β1xt, if xt param. as cont.,∑m

j βj Ij(xt), if xt param. as a factor,
β1 cos( 2πxt

ω ) + β2 sin( 2πxt

ω ), if xt param. as sinusoidal,
s(xt), if xt param. as a spline,

(5.4)

2Here the term ‘covariate’ is used loosely, as under some parametrizations a variable (e.g.
‘hour’) might be continuous or composed of several dummy variables.

3The ‘season’ variable is a function of month. The months December, January, February
are combined into ‘winter’, March, April, May are combined into ‘spring’, etc.

4The sinusoidal term here employed is the decomposition of the sinusoidal waveform:
A cos(2πωt + ϕ) = β1 cos(2πωt) + β2 sin(2πωt), where A is the amplitude, ϕ is the phase shift,
ω is the frequency, β1 = A cos(ϕ) and β2 = −A sin(ϕ) (Shumway et al. 2017).
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where m is the number of levels in the factor variable xt; the indicator function
Ij(xt) = 1 if xt = j or 0 if xt ̸= j; ω is a fixed frequency oscillation (e.g.
set to 24 for hours, 7 for weekdays etc.); and s(·) is a smoothing term
s(xt) =

∑d+1
j βj bsj(xt), which is a basis spline function with d degrees of

freedom.

Parametrization:
Covariate Cont. Factor Sinusoidal Spline
Intercept 8004.57 − − −
Year 8467.63 9450.03 − −
Season 6989.82 5901.40 5896.06 6726.04
Month 7830.97 5173.46 5157.30 5171.53
Week 7832.89 5067.29 5086.29 5066.63
Weekday 7894.09 7831.86 7881.07 7899.76
Hour 7822.06 7289.62 7490.59 7291.37

Table 5.1: RMSE for 22 univariable time models on the form of eq.(5.3) and
the intercept model (5.1). The best predictive performance of a single covariate
is the spline fit using ‘week’. Bold indicates best parametrization.

The results (Table 5.1) show that for all variables, except for the trend term
‘year’, the continuous parametrization is the worst performing, which is not
surprising given the cyclical nature of the other variables. Notice also that
models including just the trend term ‘year’ are notably worse than the intercept
model. Models including the terms ‘week’, ‘month’ and ‘season’, which describe
the annual cycle, all showed considerable predictive performance compared to
the intercept, and especially for the two former terms there was little sensitivity
to the parametrization (excluding the continuous option). The two short cycles
‘hour’ and ‘weekday’ were best parameterized as factors, but their improvement
over the intercept model is relatively modest, especially for the latter. The
better performance of the annual cycle terms is mainly due to the greater
variation in the annual demand cycle than in hourly or weekly demand cycles.
Whereas the longer cycle terms give adequate predictions throughout the year,
the short cycle models only perform well in select periods in spring and autumn
when the observations are close to the hourly or weekly average. We also see
that the more granular the annual cycle is described, the better the performance.

The next batch of models combine these covariates into non-interaction
multi-variable models on the form:

yt = β0 + f1(x(1)
t ) + ...+ fp(x(p)

t ) + ϵt, (5.5)

where fp(xp
t ) for variable p ∈ 1, · · · , 6 is some parametrization of x(p)

t . For 6
variables with up to 5 parametrizations (including also fp(x(p)

t ) = 0 for non-
inclusion) we have 55 · 3 = 9375 possible models on this form. As mentioned
above, because of computational time we restrict ourselves to looking at only
a small subset based on the results from the univariate models. The models
we consider either consist of the best parametrization of each covariate found
above or are neighbours of this model. In total, 6 such models were tested
(Table 5.2). The model consisting of the best parametrization of each covariate
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Metric:
Model RMSE Skill Score
Climatology 4114.54 −
Best param. 3264.24 0.371
No year term 3460.04 0.293
Season as factor 3263.51 0.371
Month as spline 3255.39 0.374
Week as factor 3262.58 0.371
Hour as spline 3268.49 0.369

Table 5.2: Model performance (RMSE and skill score) for multivariable non-
interaction time models on the form of eq. (5.5) and the climatology model (5.2).
The model utilizing the best parametrizations is a considerable improvement on
the climatology model. Modifications of the former only improved predictive
performance slightly, or not at all, having skill scores at roughly the same level.
Bold indicates best performance.

found above had an RMSE score of 3264.24.5 This is a substantial improvement
not only on the univariable models, but also on the climatology model, with
a skill score of 0.371 (Section 3.8). Since the trend variable ‘year’ performed
worse than the intercept model, we also tried a modification of the above model,
removing only the ‘year’ term. This model is noticeably worse, so even if
‘year’ on its own was not a good predictor, when other covariates are added,
it is advantageous to keep it (at least in this setting). In the case of ‘season’,
‘month’, ‘week’ and ‘hour’, the RMSE scores were fairly similar for several
parametrizations. This led us to also consider four other modifications where
the best performing parametrization was swapped out in favor of the second
best. Only very slight improvements in predictive performance were found. The
best result was achieved by swapping the sinusoidal month parametrization
with a spline (RMSE = 3264.24 vs 3255.39).

Having found a seemingly good parametrization, we also looked at how the
model could be improved using interaction terms. This was motivated by data
inspection where it is clear that the hourly and weekly cycles are quite different
in summer compared to winter (Section 4.1). Since both the ‘week’ and ‘hour’
terms were parametrized fairly well both by splines and factors, we looked at
both spline and factor interactions between these two shorter cycles, and the
annual cycles of ‘season’, ‘month’ and ‘week’ respectively. We tested 12 such
bi-variable models with one interaction term, using the same outcome as before,
on the form:

yt = β0 + g(x(a)
t , x

(b)
t ) + ϵt, (5.6)

where x(a)
t is a short-term cycle term and x(b)

t an annual cycle term and where
5The model formula for this model is for observation at target time t, indicator function

Ik(·), basis spline function bsk(·), year yr, month m, season sn, week w, weekday wd, and
hour h: yt = β0 + β1yrt + β2 cos( 2πmt

12 ) + β3 sin( 2πmt
12 ) + β4 cos( 2πsnt

4 ) + β5 sin( 2πsnt
4 ) +∑9

k=1 β5+k bsk(wt) +
∑6

k=1 β14+k Ik(wdt) +
∑23

k=1 β20+k Ik(ht) + ϵt.
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g(·) depends on the type of interaction:

g(x(a)
t , x

(b)
t ) =

{∑
k

∑
j β(j−1)·|k|+k Ik(x(a)

t ) : Ij(x(b)
t ), if factor interaction,

s(x(a)
t , x

(b)
t ), if spline interaction,

(5.7)

where s(·) is a spline function. On the whole, the spline interaction models
performed considerably worse than the factor interaction ones (Table 5.3). Both
‘short cycle’ terms achieved the best results when paired in a factor interaction
with ‘week’. These are also the computationally heaviest models to run; the
interaction between ‘hour’ and ‘week’ containing 24 · 53 + 1 = 1273 parameters.

Annual Cycle Term:
Short Cycle Term Interaction Season Month Week
Weekday Spline 6894.59 7752.75 7758.70
Weekday Factor 5662.67 4903.64 4838.51
Hour Spline 6340.32 7245.58 7263.93
Hour Factor 4818.49 3869.38 3719.31

Table 5.3: RMSE for time covariate models with 1 interaction on the form of
eq. (5.6). Each row shows a short-term cycle, the type of interaction, and the
RMSE for the interaction between the short-term cycle and 3 different annual
cycles. The best performing model on this form is the factor interaction between
‘hour’ and ‘week’. Bold indicates best interaction pair for short cycle term.

These interaction models do not show any overfitting tendencies, as the
model with the most parameters for each short-term cycle has also been the
best performing model. The factor interactions can be seen as a set of intercept-
relative averages for specific time-based intersections of the demand observations.
They are performing well not only because the intersections capture relevant
distinct sections of the output, but also because of sufficient amounts of data
enabling a good description of each section. Notice that the climatology model
can be viewed similarly, but with more parameters (24 ·365 = 8760) and without
the intercept term. The worse performance of the climatology model compared
to the interaction model with ‘hour’ and ‘week’ shows that there is a limit to
the utility of carving up smaller and smaller intersections.

The last set of models in this section adds interaction terms to the best
multivariable non-interaction model. This naturally increased the model size;
the biggest such model contained over 1500 parameters. Concerns about possible
overfitting and computational time therefore led us to consider not only the
best interaction term for each short cycle, but also the second best interaction
term. Four models were tested using different combinations of the interaction
terms in addition to the other covariates from the previous full non-interaction
model. They were on the following form:

yt = β0 + f3(x(3)
t ) + ...+ fp(x(p)

t ) + g1(ht, x
(a)
t ) + g2(wdt, x

(b)
t ) + ϵt, (5.8)

where g1(·) and g2(·) are factor interaction functions, ht is hour and wdt is
weekday and x

(a)
t and x

(b)
t is either ‘month’ or ‘week’. Notice that when we
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include ‘hour’ and ‘weekday’ in interaction terms, we remove them as free-
standing covariates.6 Four different full interaction models were tested where
the model with the fewest parameters was the best performing (Table 5.4).
In this case we see some evidence of overfitting. The model with the most
parameters which includes both hour:week and weekday:week has the lowest
training error, but it is outperformed on the test evaluation by two more
parsimonious versions.

Hour Interaction (g1):
Weekday Interaction (g2): Hour:Week Hour:Month
Weekday:Week 3199.39 3211.30
Weekday:Month 3136.35 3126.09

Table 5.4: RMSE for time covariate models with two interactions on the form
of eq.(5.8). The cross-table shows the performance of the full model with four
different combinations of two interaction functions g1(·) and g2(·). The best
combination is the model utilizing the interactions between ‘hour’ and ‘month’
as well as ‘weekday’ and ‘month’.

Overall, the best time covariate model is the full interaction model utilizing
‘hour’ and ‘month’ as well as ‘weekday’ and ‘month’.7 Comparing the time
covariate models with the climatology model (Table 5.5) we can see that the
best interaction model improves upon climatology with a skill of 0.423 over
the 30 day test period. As was evident from the data inspection (Section
4.1), energy demand is strongly time dependent, and by utilizing an effective
parametrization we have built a model that is a considerable improvement on
the climatology model when it comes to forecasting energy demand.

Metric Climatology No Interaction Interaction
RMSE 4114.54 3255.39 3126.09
Skill − 0.374 0.423

Table 5.5: Model performance of time covariate models comparing climatology
with the best models with and without interaction terms.

An additional benefit of these time covariate models is that they add another
point of reference with which we can compare the models that incorporate
temperature. In this manner we obtain an assessment of how much the addition
of temperature data (explored in the next section) in our model is worth to the
prediction task.

6This was done because of singularity issues in some models, but also to keep the number
of parameters down. Whether predictive accuracy could be improved by keeping these terms
is a question left for another time. The standard choice is to include them.

7We write for hour h, week w, weekday wd, month m, season sn and year yr,
where each bsk(·) is a spline term: yt = β0 + β1yrt + β2 cos( 2πsnt

4 ) + β3 sin( 2πsnt
4 ) +∑8

k=1 β3+k bsk(mt) +
∑8

k=1 β11+k bsk(wt) +
∑24

k=1

∑12
j=1 β19+(k−1)·12+j Ik(ht) : Ij(mt) +∑7

k=1

∑12
j=1 β19+24·12+(k−1)·12+j Ik(wdt) : Ij(mt) + ϵt
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5.3 Temperature Models

In this section we look at different ways of utilizing temperature data for
predicting energy demand. The first models considered utilize the mean grid
temperature, z̄t, at each target time t as a single predictor. We write this as:

yt = β0 + f(z̄t) + ϵt, (5.9)

where f(z̄t) = β1z̄t in the linear case and f(z̄t) =
∑D

d=1 βdbd(zt) in the spline
case, where bd(·) is a basis spline. The spline fit performs slightly better (Table
5.6), but notice that the mean grid temperature is a worse single predictor than
both ‘month’ and ‘week’ (Table 5.1).

The rest of the models in this section are based on temperature data in the
form of principal components. We first look at models with only one principal
component as a predictor, of the form:

yt = β0 + f(Cj
t ) + ϵt, (5.10)

where Cj is principal component j (described in Chapter 3) limiting ourselves
to the first 10 principal components so we have j ∈ {1, · · · , 10}, and where f(·)
is either a linear or a spline function.

Principal Component:
Model M-G C1 C2 C3 C4 C5

RMSE - Spline 5401.71 5323.50 7971.52 8485.08 8343.64 8263.97
RMSE - Linear 5584.67 5549.05 8000.77 8191.44 8129.25 8239.27
Model C6 C7 C8 C9 C10

RMSE - Spline − 7907.42 7837.66 8032.13 8599.72 7820.39
RMSE - Linear − 7946.14 7974.37 8005.99 8018.85 8026.34

Table 5.6: RMSE for univariable principal component models, on the form of eq.
(5.10) and mean grid (M-G) models (eq 5.9). The C1 and Mean Grid models
are the only two models that substantially outperform the intercept model, the
former having a slight edge.

The results (Table 5.6) show that among the principal component models
there is only one standout model which offers a large improvement over the
intercept model (RMSE of 8004.57). This is the C1

t model, which is best
parameterized through a spline. Compared to the single time covariate models
we see that C1

t is better than all other covariate models except for the ‘month’
and ‘week’ predictors when under their best parametrization. The improvement
of the C1

t model with regard to the mean of the temperature grid is slight; the
skill score using the latter as baseline is just 0.029. However, an advantage of
the principal component dimensionality reduction is that we can combine more
than one principal component in the model, as we do below:

Two different strategies for combining the principal components were
attempted. Both were centered around the first principal component, C1

t ,
which as we saw in Section 4.2 has an in-sample variance explained of 84.2%.
Since the C1

t spline model was an improvement on the linear version, we
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Principal Component Combination:
Model C1 C1+C2 C1+· · ·+C3 C1+· · ·+C4 C1+· · ·+C5

RMSE 5323.50 5334.81 5777.55 6270.58 6948.27
Model C1+· · ·+C6 C1+· · ·+C7 C1+· · ·+C8 C1+· · ·+C9 C1+· · ·+C10

RMSE 6906.23 6942.78 6869.10 6862.39 6905.28

Table 5.7: RMSE for models with multiple principal components on the form
of eq. (5.11). None of the combination models represent an improvement upon
the C1

t model.

henceforth continue modeling all principal components by splines. We fitted 9
models where the first of these combined C1

t and C2
t and each subsequent model

added another spline, the last one containing all PCs including C10
t . These

models are of the form:

yt = β0 + s(C1
t ) + ...+ s(Cj

t ) + ϵt, (5.11)

for j ∈ {2, · · · , 10} and s(·) is a spline function. It is clear there is no gain
in overloading the model with principal components (Table 5.7). Adding C2

t

gives a model performance that is very slightly worse than the model with just
C1

t . Then there is a marked drop off at each step when adding C3
t , C4

t and C5
t .

Performance thereafter stabilized at a low level around 6900. These models
show an overfitting pattern from the addition of C2

t , as when the number
of parameters increase the training RMSE decreases while the test RMSE
increases.8

Even if model performance did not improve when adding several principal
components to C1

t , we also checked whether a specific combination of C1
t and

one other principal component could improve performance. We therefore ran
another 8 models, each a combination of C1

t and another principal component,
on the form:

yt = β0 + s(C1
t ) + s(Cj

t ) + ϵt, (5.12)

for j ∈ {2, · · · , 10}, with s(·) being a spline function. These two-predictor
models (Table 5.8) fared better than the last batch, but overall the results were
lackluster. Adding C2

t (the same model as in 5.7), C7
t , and C10

t to C1
t had a

very slight negative effect on predictive performance, while adding C6
t actually

improved the model slightly.
To summarize, utilizing just temperature information for predicting energy

demand did not yield as good results as when utilizing just time covariates.
Of importance is the observation that none of the models containing just
temperature information performs better than the climatology model. The best
temperature model employed the first and sixth principal components in a spline
fit. The first principal component is clearly a good predictor as was surmised in
Section 4.2, but adding other principal components generally did not improve
model performance. To see whether the model containing C6

t represents an
actual improvement over the C1

t -model we employed a permutation test using
skill score as a test statistic over 10000 permutations. We obtain an observed

8We see the same pattern in Figure 5.1 for a similar model type.
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Principal Component Combination:
Model C1 C1 + C2 C1 + C3 C1 + C4 C1 + C5

RMSE 5323.50 5334.81 5759.80 5474.16 5545.83
Model C1 + C6 C1 + C7 C1 + C8 C1 + C9 C1 + C10

RMSE 5298.79 5328.91 5372.79 5389.64 5334.22

Table 5.8: RMSE for two-predictor PC models on the form of eq. (5.12).
Only the addition of C6

t to the first principal component resulted in a slight
improvement in predictive performance.

test static skill score of 0.009 with a p-value of 0.0898, which is not significant
at α = 0.05. For a note on the use of permutation test see Section 5.5.

5.4 Final Structural Demand Model

Finally, we consider models that combine the time covariates with temperature
information. The models in this section will build upon the 4 multivariate
interaction models presented in Table 5.4 and add to each of these temperature
information of the form:

yt = f(xt) + h(zt) + ϵt, (5.13)

where f(xt) is a multivariable interaction model utilizing time covariates, xt,
specified in eq. (5.8). f(xt) includes the interaction functions g1(·) and g2(·),
and h(zt) is a function of temperature information zt.

Hour Interaction (g1):
Weekday Interaction (g2): Hour:Week Hour:Month
Weekday:Week 2881.55 2901.25
Weekday:Month 2818.73 2832.62

Table 5.9: RMSE for mean grid models with 4 different time covariate interaction
combinations, using h(zt) = s(z̄t).

The first set of such models include temperature in the form of mean grid,
i.e. using h(zt) = s(z̄t), where s(·) is a spline function. The mean grid models
all represented a substantial improvement on the time covariate models. The
best model employs the hour:week and weekday:month interactions (Table 5.9).
It has a skill of 0.187 compared to the best non-temperature model, which
makes it clear that the addition of temperature information greatly improves
predictive ability.

We then combined the four time covariate interaction models with both of
the principal component combination set-ups from the last section. For the
set-up with an increasing number of principal components, we tested a total of
36 models, using h(zt) = s(C1

t ) + ...+ s(Cj
t ). Figure 5.1 summarizes the results.

The interaction setup including hour:week and weekday:month was consistently
the best performing and is shown in red for different numbers of principal
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Figure 5.1: Training and test errors for 36 GAM-PC models. The red line shows
the test RMSE for the best performing interaction model. It achieves the best
results by using the two first PCs. The black line shows the training error for
the best interaction model. It is steadily decreasing, while the improvement in
the test error stops after the addition of the second PC. Test results for the
other interaction models are shown in the grey dashed lines.

components in the model. For models including up to the three first principal
components we see a clear improvement over the mean grid models. This is
largely independent of time covariate interaction parametrization. Earlier, we
saw no improvement by adding C2

t to C1
t in a model without time covariates.

Now, we see a substantial improvement by having C2
t in the model, when the

time covariates are present as well. For models including more than the two
first PCs there is clear evidence of overfitting. Even though the training error is
reduced for each added principal component this improvement stops in the test
sets after adding C2

t .9 These points also hold for the performance of the other
3 interaction setups whose results follow the same general behaviour (shown in
grey). Table 5.10 shows the exact results for the 4 interaction models containing
both C1

t and C2
t .

Hour Interaction (g1):
Weekday Interaction (g2): Hour:Week Hour:Month
Weekday:Week 2693.27 2710.35
Weekday:Month 2643.16 2665.76

Table 5.10: RMSE for GAM-PC1+2 models with 4 different time covariate
interaction combinations, using h(zt) = s(C1

t ) + s(C2
t ).

Finally, an additional 32 models were tested. For each interaction setup,
9This pattern was also present in the similar model set-up without time covariates from

the last section.
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we added a pairing of C1
t with one other principal component. The results

(Figure 5.2) show that no other principal component beyond C2
t improves the

model substantially when added to C1
t , and again we see the same pattern for

all interaction frameworks. In the previous section we saw that adding C6
t to

C1
t increased the model performance slightly, but no such effect is seen with

the presence of the time covariates.
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Figure 5.2: Training and test errors for 32 GAM-PC models with h(zt) =
s(C1

t ) + s(Cj
t ). The x-axis shows the additional principal component Cj

t .

Summing up our findings, we see that the best model overall is GAM-PC1+2,
which we write as:

yt = f(xt) + s(C1
t ) + s(C2

t ) + ϵt, (5.14)

where f(xt) is specified by the interaction model including the interaction terms
for hour:week and weekday:month, and s(·) is a spline function. From Table
5.11 we see that GAM-PC1+2 offers a skill improvement on all other models.
We also see that for each step in the model selection procedure, we have been
able to find better performing models. The best performing model by RMSE
achieves a skill score of 0.59 when compared to climatology. It leverages both
the effective parametrization of time covariates as well as using a spline on PC
transformed temperature data. 67.2% of the reduction in RMSE between the
climatology model and GAM-PC1+2 comes from utilizing time covariates; a
further 20.9% comes from adding temperature information (as mean-grid); and
the last 11.9% comes from utilizing PCs instead of mean grid temperature.

5.5 Assessing Model Performance

So far, we have observed, first, that adding time covariates to the model improves
model performance substantially, and second, that adding temperature data in
the form of PCs gave a further increase in skill. In this section we will look at
the performance, virtues and limitations of the GAM-PC1+2 model in terms of
model sensitivity to training and test modifications.
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Skill Score with Reference to:
Model RMSE Climatology Interaction Mean-Grid
Climatology 4114.54 − − −
Interaction 3126.09 0.42 − −
Mean-Grid 2818.73 0.53 0.19 −
GAM-PC1 2754.81 0.55 0.22 0.04
GAM-PC1+2 2643.16 0.59 0.29 0.12

Table 5.11: Model performance (RMSE and Skill) of key models. The best
performing model is GAM-PC1+2, which had a substantial positive skill
compared to all other models.

We start by looking at how the GAM-PC1-2 model obtains better results
than the other models we have looked at. Electricity demand has clear temporal
cycles and adding temperature information enables us not only to predict, e.g.,
that demand is high because it is winter, but also that demand is very high
because it is a colder winter than usual. In Figure 5.3 this is illustrated by
comparing model predictions for two weeks (10 and 49) in 2021. The top-right
plot shows that week 49 in 2021 had an unusually low temperature (red) and
a corresponding spike in demand (green). The GAM-PC1+2 model is able to
translate this temperature information into adjusting its prediction of demand
upwards to accurately track the demand spike. This can be seen directly
(bottom-right plot) where the red line (GAM-PC1+2) does a much better job
of tracking the observed demand (black dots) than the other two models. We
also see (top-left) that for week 49, GAM-PC1+2 had a particularly high skill
compared both to climatology and the best time interaction model.

Week 10 offers a contrasting case. There was a high positive temperature
anomaly and a corresponding slight drop in demand. The performance of
GAM-PC1+2 is very good compared to climatology, but the interaction model
without temperature is better overall for this week. The climatology does not
have weekday information, which accounts for the bad performance on the 6th
and 7th of March.10 And towards the end of the week it appears that the
GAM-PC1+2 model over-adjusts upward.

If we look at performance by month there are large variations in RMSE
scores, not only for GAM-PC1+2, but also for the other main models (from
Table 5.11) we have considered. These models generally perform worse in winter
and better in summer. For GAM-PC1+2, the worst month is December with an
average RMSE of 3353.91 compared to August’s average of 2169.563, which is
the best performing. This might be tied to larger variations in demand during
the winter months connected to rapid temperature shifts.

Crucially, however, even if model performance is worse in the winter months,
the model improvement of GAM-PC1+2 with respect to the other models is
higher during winter. In the top left plot of Figure 5.4, we see that the skill
of the GAM-PC1+2 model compared to the other models is generally positive

10The data.table week-function does not count week numbers in the same way as a
standard calendar. This was discovered too late to fix the plot, but has no bearing on the
results of the analysis. The plot reports results for 7-day periods (artificial weeks) starting on
Thursdays.
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Figure 5.3: Prediction performance using 2021 observations comparing the
GAM-PC1+2 model with climatology and the best time interaction model in
terms of skill by week (top-left) and actual vs predicted values for weeks 10 and
49 (bottom). Top-right shows the relation between temperature and demand
throughout the year.

across the board, but especially high during the winter months. We also see that
GAM-PC1+2 outperforms GAM-PC1 in all months but October and November.
As we saw in Section 4.2, the second principal component, C2

t , is related to the
land-sea temperature differential. It appears that projecting this differential
back on the temperature data is most beneficial in winter, and especially for
the months of February and March. This corresponds with a time of year where
C2

t tilts mostly positive and exhibits more variation. It is plausible to think
that this variation reflects variation in the sea breeze (Steele et al. 2014), which
in turn might affect demand patterns.

Shifting our focus to the bottom plot (Figure 5.4) we see the skill relative
to climatology for each individual test month for three models: The interaction
model, GAM-PC1 and GAM-PC1+2. Their performance is broadly similar,
but the latter seems to outperform the other two rather consistently. There
are, however, two periods where drops in performance is particularly jarring.
In spring and summer of 2018 we find a prolonged period with negative skill
for all three models. The poor skill here is not because these models have
very elevated RMSE scores in this period, but largely because the climatology
model is doing unusually well. The second drop occurs in autumn 2022 and the
models which include temperature information actually do worse here, while the
interaction model stays close to the performance of the climatology. The GAM-
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PC models predicted a higher energy demand than both the non-temperature
models and compared to what actually occurred. It is tempting to suggest that
the GAM-PC models simply did not account for the effect of the new European
energy situation, including higher energy prices and encouragements of using
less energy even during cold weather periods (IEA 2023).

In the top right plot we see that the skill of the models depend on the hourly
cycle. The models are not doing as well at night-time relative to climatology
as they do during the day, when demand is higher. The difference between
GAM-PC1+2 (red) and GAM-PC1 (black) is fairly constant through the daily
cycle, but adding temperature information is most beneficial at night (between
21:00 and 4:00) if we compare the temperature models with the time interaction
model without temperature (yellow).
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Figure 5.4: Skill by month, hour and forecast issuance month. The top-left plot
shows the skill of GAM-PC1+2 relative to three other models, while the other
two plots each show the skill of three models relative to climatology.

To test the robustness of the results, we perform a non-parametric Monte
Carlo residual permutation test. We want to detect whether results of different
models are significantly different. These tests assume exchangeability. But since
our model outputs are highly correlated time series, we do not strictly satisfy
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test assumptions. In Section 3.6 we described a copula method that takes
account of the correlation structure between model outputs to form aggregates.
Unfortunately, we have not been able to develop a testing framework that takes
account of the correlation, but we will nonetheless present test results as a
guiding tool. We tested all models in Table 5.11, except climatology. For each
model we ran a permutation test (10000 permutations, n = 60864) to check if
said model was significantly different from the model performing slightly worse.
In all cases we obtained a p-value of 0.0000, strongly indicating that the results
are significantly different.

To check for sensitivity to changes in the training period we ran the GAM-
PC1 and GAM-PC1+2 models over 6 different training period intervals. The
effect of changing the training period is considerable in terms of RSME scores,
but not with regard to which model performs the best. In the initial set-up we
used a 5-year training period, meaning all models were trained on the five years
of data directly preceding each forecast issuance. The initial training period
choice was made as a compromise between the wish for using as much data as
possible and computational time.

Using the 5-year training interval the best GAM-PC model had an RMSE of
2643.16. By reducing the training period down to 3 years (Table 5.12) we saw a
considerable improvement with an RMSE of 2537.97 which represents a skill of
0.078 compared to the same model with 5 years of training. As expected, the
performances are worse with limited training data. It is more surprising that
for each additional training year added, after 3 years, the performance of the
models drops, and that the worst performing training interval included all years
up to forecast issuance. This suggests that the relation between energy demand
and the predictors might have undergone a shift during the period for which we
have data. A line of investigation we will not pursue further here, could re-run
the models from Sections 5.2 and 5.3 over different training intervals and check
whether this change was more apparent for the time or temperature predictors.

Training Period (years):
Model 1 2 3 4 5 All
GAM-PC1 2861.92 2646.71 2637.48 2707.67 2754.81 2958.89
GAM-PC1+2 2827.23 2588.27 2537.97 2608.55 2643.16 2834.80

Table 5.12: Effect of training period on RMSE of the two best GAM-PC models.

Lastly, we look at the issue of sensitivity to testing periods or lead time. A
key assumption made during the tests of the structural demand model (Section
3.3) has been that we have access to perfect information about future weather
15-45 days out from forecast issuance. The effect of this assumption should
be seen directly from the model output. If we look at model performance for
GAM-PC1+2 by lead time (Figure 5.5) we first observe that it exhibits strong
fluctuations. Performance does, unexpectedly, slightly worsen further away
from forecast issuance. This is indicated by the linear trend (red) with an
increase per lead time of β1 = 0.18. We consider this spurious, and an artefact
of the both the fluctuations and the test window. A slightly smaller or larger
test window would diminish the trend. This can be seen by the blue line which
shows a diminished (β1 = 0.08) trend for days 15:40. A much clearer lead time
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dependence will become apparent when considering models with temperature
forecast inputs (see Chapter 7).
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Figure 5.5: RMSE GAM-PC1+2 over lead time. The red line indicates the
linear trend over days 15:45, while the blue line shows the trend for days 15:40.

5.6 Alternative Model Implementations

In this section we will compare the results for the best performing GAM-PC1+2
model with two different models: Lasso and XGBoost. The same cross-validation
set-up as before was utilized, with a caveat: For these models, good performance
relies on finding the best performing tuning parameter. Because of this, we first
ran broader grid searches over a range of tuning parameter values, before we
based on the results of the broad search ran finer searches over smaller areas.

Lasso

The first alternative model implementation we ran was the Lasso. The Lasso
model is a regularizer which constrains the size of the β-coefficients through
including a penalty term regulated by the tuning parameter λ. It has feature
selection properties in the sense that it can set coefficient values to 0, effectively
removing the corresponding covariate from the model. The formula for the
estimated β-coefficient is given by:

β̂lasso = argmin
β


n∑

t=1
(yt − f(xt, βj))2 + λ

p∑
j=1
|βj |1

 , (5.15)

where p is the number of parameters, λ is the regularizing tuning parameter
and |·|1 is the L1 (Manhattan) norm (Hastie et al. 2009). We ran three model
set-ups with different specifications of the model function f(xt, βj) utilizing the
Lasso framework. Tuning these models was done in two steps where we did a
broader and then a narrower search for finding the best tuning parameter, λ.
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The performance of the glmnet-function is seed dependent because of the warm
start, so marginally different results are obtained if the λ-sequence is specified
differently. Since the differences are so marginal, we have opted to report only
one results for each model.

In the first set-up we utilized only temperature information from the
462 individual grid points, each grid point being a predictor. We have
f(zt, βj) =

∑p
j=1 z

(j)
t βj , where zt is a vector of grid point temperatures. The

first broader grid search for this model was done over 1000 λ-values in the range
of 0-20. The lowest RMSE was 4763.75 and was found for λ = 4.14. We then
ran a second run over 1000 λ-values in the range 3-5. This resulted in a very
slight improvement; the best RMSE-value was 4758.90. This performance is
better than all other models with just temperature (compare Table 5.6).

In the second set-up we included time covariates in addition to the
temperature grid points. In this set-up we use a straight-forward factorization
of all time covariates. The best results found in the broader search achieved
an RMSE of 2606.10 at λ = 7.91, a more granular search over the range 7-9
yielded the same result 2606.10 now at λ = 7.79.

The third set-up utilized a similar time covariate set-up to the best one. Here
we expand the parameter space by utilizing the same two factor interactions
and instead of using a spline and sinusoidal term, we factorize these as well,
in addition to all the temperature grid points. At λ = 7.31 we found the best
RMSE of 2537.05, a marked improvement on the previous best model found.
A narrower search over values 7-8 again yielded a slight improvement with
2535.971 at λ = 7.28.

XGBoost

For the XGBoost model, we used the same cross-validation approach as
previously. Similarly to the Lasso framework, we ran three model set-ups
with different covariate inputs. The XGBoost algorithm, which utilizes
components from regression trees, gradient boosting and penalized regression
works iteratively to minimize the following equation:

[
n∑

t=1
L(yt; f(xt;β))] + γ T + 1

2 λO(β)2. (5.16)

where γ is the pruning term controlling the number of terminal nodes T , and
λO(β)2 is the regularization term (Chen and Guestrin 2016; Chen 2014). In
our case we use the squared error loss: L(yt; f(xt)) = 1

2 (yt − f(xt))2.
For regression problems XGBoost can be operationalized either as an

ensemble of decision trees (‘gbtree’) or as an ensemble of linear models
(‘gblinear’). Preliminary trial runs heavily favoured the latter as both faster
and more accurate for our problem. We will therefore only present results for
the linear version.

The XGBoost is an iterative algorithm which at each step re-fits the residuals
of the last iteration’s prediction using weak learners. The most important tuning
parameter for XGBoost is the stopping parameter M , controlling the number
of refitting steps. The step size parameter η was set to 0.5 throughout the
testing phase. This is higher than the standard of 0.3. Higher step size is faster
as the algorithm takes bigger steps toward the solution at each iteration, but
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comes with the risk of over-shooting good solutions. The choice of η = 0.5 was
made as a compromise between computation time and minimizing the risk of
over-shooting. 11

XGBoost also has a penalty term which can be specified either as L1 or
L2-regularization. We use the L1 penalty because of its variable selection
properties. To find well-performing combinations of M and λ, we used a two-
step procedure. In step 1, with λ set to 0, we found the best stopping point
M . We then searched for the best λ at step M previously found. In step 2,
this combination was then used as a starting point for a small grid search over
parameter values close to those already found. The ranges used in both steps
varied according to the covariate input, but the ranges were much less granular
than in the case of the lasso algorithm. This is not only because we are tuning
two hyper-parameters, but also because the XGBoost model had to be refitted
for each choice of M , in contrast to the Lasso where predictions for each λ are
directly available. The best results (Table 5.13) using only grid temperatures

Model Grid Temp Factor Interaction
Lasso 4758.90 2606.10 2535.97
XGBoost 4761.17 2604.95 2544.03

Table 5.13: Model performance (RMSE and skill score) comparing Lasso and
XGBoost models with different parametrizations.

were found at M = 820 and λ = 4.25. When using time covariates as factors in
addition to the temperature grid, we settled on M = 120 and λ = 4.00. And
when including time interactions the best hyper-parameters was M = 33 and
λ = 7.00. The results for the XGBoost models are roughly at the same level
as for the Lasso models, and slightly better than the GAM-PC1+2 models.
It must be said that only a fraction of the possible tuning settings have been
explored for combinations of M and λ. And it might also be possible to improve
the model with a smaller choice of step size, η. It is notable that all models did
better when time interactions were introduced.

Model Climatology XGBoost Lasso GAM-PC1+2
RMSE 4114.54 2544.03 2535.97 2643.16
Skill − 0.618 0.620 0.587

Table 5.14: Model performance (RMSE and skill score) comparing alternative
model implementations with GAM-PC1+2 for models using 5 years of training
data. The skill score is shown with reference to climatology.

The performance of the Lasso and XGBoost models is clearly better than
that of the GAM-PC1+2 model (Table 5.14). But the latter model has
two clear advantages: Interpretability and model parsimony. With regard
to interpretability, the intuition behind GAM-PC1+2 is described both in
Section 4.2 and in Section 5.5. The GAM-PC1+2 model attempts a slightly

11A similar outline of the XGBoost model was presented in a written exam assignment in
the course STK-MAT2011 titled "Shapley Values in Explainable Machine Learning", by Eirik
Sjåvik.
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different task than the two other models. The latter might be (somewhat
simplistically) described as looking for the temperature grid points which have
the most influence on energy demand. The GAM-PC1+2 is modeling the
relation between demand and the temperature field as a whole over the Nordic
region. The advantage of this is that we can, through PCA, drastically reduce
the number of predictors in the model. This parsimony greatly facilitates
the incorporation of NWP forecasts into the model, as we now only have two
temperature targets to predict.

The Lasso models, in contrast, are despite the regularization, not able to
reduce the size of the temperature variable set by a great amount. Depending
on the model run, the Lasso models consistently keep well over 100 temperature
grid points in the model. This means that it is also harder to conceptualize how
the Lasso models make use of the temperature grid point predictors. Because
the temperature field is highly correlated, the selected grid points are often
located in areas far from where the electricity is consumed. The high correlation
might also be the reason why the Lasso models are not able to select the same
grid points on a consistent basis. If the consistency is not there, we cannot
take advantage of the dimensionality reduction achieved by regularization when
porting the model to another setting. The same considerations apply for the
XGBoost models, except that these exhibit more stability in the covariates they
select.

We conclude this section with a short summary of the findings of this
chapter. Most importantly, we have found that the GAM-PC1+2 model is the
best model we have explored that incorporates both time covariates and principal
components of temperature. This model represents a clear improvement in terms
of predictive performance both with regard to the baseline climatology model
and compared to models employing only time covariates. We have also seen
that the inclusion of temperature information leads to substantial improvements
in predictive performance. But we also observed that a good parametrization
of time covariates yielded better predictive performance than temperature
information on its own. Compared to alternative model implementations (Lasso,
XGBoost), the GAM-PC1+2 performs slightly worse, but has key advantages
when it comes to interpretability and parsimony.
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CHAPTER 6

Problem 2: Probabilistic
Temperature Forecasting Utilizing

Seasonal NWP Model Output

The performance of the GAM-PC1+2 structural demand model (5.14) described
in the previous chapter is conditioned upon knowing future temperature, or more
specifically, future principal components of temperature fields. Unfortunately,
we do not have access to these at the time of forecast issuance. Thus, in
this chapter we will focus on several methods that enable us to forecast future
temperature principal components (the alternative would be to rely on estimates
from e.g. climatology). These forecasts will in turn be used as inputs in our
final demand forecast model (Chapter 7). Our attention will be centered
on probabilistic temperature forecasts utilizing seasonal NWP model output
(described in Chapter 4) as a way of estimating temperature principal component
quantiles.

The first three sections will concern the use of NWP forecast data to estimate
quantiles of the predictive distribution of temperature PCs at the 6-hour interval
level according to models described in Section 3.4. We will first (Section 6.1)
describe the evaluation set-up and introduce the climatology baseline. We will
then (Section 6.2) look at the performance of the direct Weighted Quantile
Estimation (WQE) model. It exhibits considerable skill up until 15 days from
forecast issuance, after which model performance is only marginally better
than the climatology baseline. In Section 6.3 we investigate the performance of
models which, in addition to the NWP input, include weights, lagged forecasts,
and time covariates in a Quantile Regression (QR) framework. We find that
the additional information offer only minor predictive improvement.

Since NWPs are issued once monthly there is a period of ca. 10-15 days
virtually without skill at the end of each month before a new forecast is issued. In
Section 6.4 we will attempt to remedy this weakness by employing a re-weighting
scheme (described in Section 3.5). This is based on observed temperature
principal components over a set interval (1-3 days), and re-estimates the forecast
covariates to emphasize the forecast members with the best performance. We
show that this re-weighting procedure enables a short-term skill increase where
the performance at days 1-5 after re-weighting reverts to the same level as it
was at days 1-5 after forecast issuance. Performance, e.g. in the middle of the
month, can be nearly recovered to the level of the start of the month. This
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re-weighting can regain skill any number of times and at any arbitrary time
point after forecast issuance.

As noted in Section 3.6, even for models with considerable skill it might
not be possible to observe model skill at a high time resolution (in our case
6-hourly) at longer time-horizons. But if we aggregate forecast predictions over
larger periods we can observe skill even at longer horizons. In Section 6.5 this
is done both naively and by using Gaussian Copula (GS) estimation. We find
that by increasing the length of the aggregation interval we can substantially
prolong the period for which we observe model skill.

In the following, attention will be kept on probabilistic temperature forecasts.
The final step of utilizing these forecasts as input in a demand model will be
considered in Chapter 7.

6.1 Temperature PC Quantile Estimation

As described in Chapter 4 each NWP ensemble member is on the form of
the ERA5 temperature data. At each time point we have between 50-200
ensemble members, each yielding predictions for every point of the temperature
grid at 6-hour intervals. This 1) enables a direct comparison between the
forecasted and observed weather, and 2) allows for the use of the same principal
component dimensionality reduction as employed in Problem 1. As discussed
in Section 5.6, in addition to showing promising results, the main advantage of
the GAM-PC1+2 model over the other models considered is that it simplifies
the temperature prediction task. Instead of estimating all (or in the case of
Lasso over 100) temperature grid points, utilizing principal components reduces
the problem down to two prediction tasks: Finding C1

t and C2
t . Because of this

advantage with respect to parsimony, we will only consider models in principal
component space. For ease of presentation we focus solely on the first PC; other
PCs may be forecasted in a similar manner.

Following a similar evaluation set-up as for the demand problem we use a
rolling prequential cross-validation (PCV) testing set-up also for the temperature
PC forecast. For this problem, training is performed on data going back to
1993. We test on 12 monthly forecasts over 16 years (and an additional month)
yielding 193 forecast periods from January 2007 to January 2023. To assess
model performance, we will primarily look at lead times up to 60 days, but will
also consider shorter segments of this interval as well as lead times up to 125
days for some applications. The central metrics employed for model comparison
are the pinball loss and the skill score based on pinball loss as described in
Section 3.8. When assessing performance across a quantile range we will utilize
the continuous ranked probability score CRPS. Mostly, however, we will focus
on the 0.9-quantile. Specifically this is the quantile that marks the point for
which we expect 90% of principal component realizations will fall below. This
in turn is associated with the coldest part of the temperature distribution at
any given time (Section 4.2). We expect analyses for other quantiles to yield
roughly similar results.

Each month, each NWP ensemble member, m, issues a forecast matrix over
500 lead times k (i.e. 125 days), covering p = 462 grid points. At target time
t, for a specific lead time k, we denote this as Nm

t|t−k (see Section 3.4). Since
the NWP forecasts are overlapping, each temperature grid observation, zt, is
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targeted by 4 or 5 forecasts issued at different times, depending on the day of
the month of the target. This means we have Nm

t|t−k for k ∈ {k1, ..., k5}, where
the interval between k’s are roughly 30 days (depending on month length). To
conceptually separate between these we call the forecasts issued closest in time
to the actual realization by ‘NWP1’, the second closest ‘NWP2’, etc.. When we
do not distinguish between issuance months in this manner, we use just ‘NWP’.

Climatology Temperature Baseline

As in the case of energy demand, temperature exhibits regular temporal cycles
(specifically daily and annual). The natural comparison point for our models is
again the climatology, this time applied over quantiles. Utilizing the observed
first principal component, C1

hdj , at hour h, day of year d, and year j, the
Climatology Quantile Temperature Baseline estimate at year n and quantile α
is given as:

Ĉ1,α
hdn = Wα(C1

hd1, ..., C
1
hd(n−1)), (6.1)

where Wα(·) is the weighted quantile estimation function described in Section
3.4, taken over all previous years j = {1, ..., (n− 1)}.

6.2 Weighted Quantile Estimation of NWP Forecasts

The NWP Weighted Quantile Estimation (NWP-WQE) model utilizes a quantile
estimate of the NWP first PC as the forecast of the first temperature PC. For
target time t, at a specific lead time k, we employ Wα(·), the WQE-function,
over the set of NWP principal components, C1,1:M

t|t−k , to obtain the quantile
estimate:

q̂α
t|t−k = Wα(C1,1:M

t|t−k ). (6.2)

The NWP-WQE model then utilizes the estimate, q̂α
t|t−k, directly as an input,

qα
t|t−k, in a forecast of the first principal component at quantile α:

C1,α
t = qα

t|t−k. (6.3)

Comparing the results with climatology (Table 6.1), we see that across all
quantiles the pinball loss averaged over the first 60 days after forecast issuance
is considerably lower for the NWP-WQE model. The variation in the pinball
scores between the quantiles (relatively symmetric around the median) stems
from the nature of the pinball loss function, as described in Section 3.8.

Overall for the 60-day period, the model skill is consistent across quantiles.
It lies between 0.110 for the 0.1- and 0.137 for the 0.8-quantile, where the top
half of quantiles have a slightly higher skill level (Table 6.1). Segmenting the
skill score of the NWP-WQE model relative to climatology into 20-day periods
we see that the model performance across quantiles are similar within each
interval: We observe high skill for the first 20-day period, some skill for the
next 20 days and for days 41 to 60 the skill drops slightly except for the highest
quantiles where the skill counter-intuitively increases slightly compared to the
21:40 period. Notice that we do not observe negative skill (indicating a forecast
performance worse than climatology) for any period or quantile. During the
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Pinball Loss (Days 1:60) Skill Score Days:
Quantile Clim. NWP-WQE 1:60 1:20 21:40 41:60

0.1 8.452 7.527 0.110 0.261 0.052 0.023
0.2 13.761 12.117 0.119 0.301 0.045 0.017
0.3 17.448 15.181 0.130 0.325 0.045 0.026
0.4 19.629 17.047 0.132 0.336 0.041 0.024
0.5 20.548 17.775 0.135 0.344 0.039 0.028
0.6 20.092 17.386 0.135 0.341 0.036 0.034
0.7 18.295 15.803 0.136 0.337 0.035 0.041
0.8 14.899 12.853 0.137 0.334 0.035 0.041
0.9 9.391 8.172 0.130 0.323 0.025 0.044

Table 6.1: Pinball Loss and Skill Score for quantiles 0.1-0.9 averaged over
different lead time days for Climatology (6.1) and NWP-WQE-model (6.3).
Bold indicates best pinball loss at each quantile, underscore indicates quantile
with best skill score for each period.

first 20-day period the best performing quantiles are found at the center of the
distribution mass with a skill level around 0.33-0.34, but the 0.9-quantile is very
nearly just as good. The 0.1-quantile has a skill score a step under the other
quantiles (at 0.261) indicating that the model shows least improvement at the
level where the principal component is the lowest, i.e. where temperature is the
highest.

In Figure 6.1 we look in more detail at the skill level by lead time for the 0.9-
quantile, now for lead times up to 125 days. We see that the NWP-WQE model
shows very high skill for the first days (at around 0.7). It then swiftly drops and
reaches 0.1 for the first time after 15 days, and hitting 0 for the first time after
23 days. After this, apart from a couple of exceptions, the skill fluctuates within
a band of 0±0.1 for the rest of the lead time duration. The other quantiles (not
shown) show very similar patterns in both pinball loss and skill score differing
mostly at the level at which the pinball loss settles. The pinball loss of the
climatology model over lead time seems settled at an equilibrium mean of 9.36.
In a linear model fit with climatology pinball loss as outcome and lead time
as predictor (yi = β0 + β1xi) we obtained the coefficient β1 = −0.0003, i.e. we
observe no linear trend. The fluctuations exhibit a prominent monthly pattern.
The auto-correlation function (ACF) of the pinball loss for climatology (Figure
6.2) corroborates this. At lags 116-128 corresponding to 27-32 lead time days
the ACF-values are all above 0.15 topping out at 0.368 for lag 124. This is
likely due to it estimating (with the same model) the same observation 4-5
times with monthly intervals (which because of uneven month lengths do not
line up perfectly between estimated dates). After the initial ‘skilled’ 23-day
period the trajectories of the pinball loss for both models follow each other fairly
closely (Figure 6.1). In fact, it seems that the performance of the NWP-WQE
model to a large extent reverts to climatology. Apart from short bursts of skill
at seemingly intermittent points there are also a couple of periods where the
NWP model improves upon climatology even if the latter is also performing
well (notice the dips at around lead times 45, 75, and 105 where NWP-WQE
shows improvement). These dip periods look similar to the period between
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Figure 6.1: Pinball loss and skill score of NWP-WQE model (6.2) with reference
to Climatology (6.1) at the 0.9-quantile. The skill of the NWP-WQE model
(black line, with axis-values to the right), is considerable up until day 15 when
it dips under 0.1. This reflects the good performance of the model (red) in
terms of pinball loss during the same period.

days 15 and 23 which suggest that one could view the point at which the NWP
model reverts to climatology as starting at 15 days out, not 23.

For the purpose of comparison we can also draw the estimated quantiles over
an example period (winter 2013/14) for both models (Figure 6.3), where we only
look at the 6:00 temperatures for a clearer overview.1 The observed principal
component temperatures (black) show a characteristic pattern for the winter
months with abrupt jumps or drops which at short intervals cover the entire
range. We see that the NWP-WQE model (red lines) draws a tighter distribution
around the center of the probability distribution than the climatology (blue
shading). Over the test period for all lead times the average distance between
the 0.1- and the 0.9-quantiles is 126.28 for the climatology model, and 116.32
for the NWP-WQE model. Between quantiles 0.3 and 0.7 the distances are
53.84 and 49.96, respectively. Restricting our attention to the period after 25
days we observe the spans 126.18 and 121.76 for the 0.1-0.9 and 53.90 and 52.52
for 0.3-0.7. Thus the NWP-WQE distribution is tighter, not only for the first
days when performance is the best, but also after model skill has subsided.

Additionally, we can readily observe that the 0.1-quantile of the NWP-WQE
model is set at a substantially lower level than for the climatology. This is a

1The same plot at hours 12:00, 18:00, and 24:00 is slightly shifted up or down. The overall
trends are made clearer when focusing on just 6:00.
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Figure 6.2: ACF of pinball loss for Climatology (6.1) by lead time at 0.9-quantile.
The pinball loss exhibits clear patterns in the correlation structure. Especially
notable is the monthly correlation around lags 116-128 (days 27-32).

fairly consistent feature across forecast months. In fact all NWP quantiles are
on average shifted down compared to climatology. For each quantile we subtract
the predicted quantile value of the NWP-WQE model from the climatology.
Averaging these differences between models we obtain for quantiles 0.1-0.9: 3.49,
4.00, 4.65, 5.10, 5.84, 7.36, 8.72, 10.70, 13.87. The downward shift holds across
all quantiles and is more pronounced the higher the quantile. The forecast
based model consistently presents a warmer distribution than the climatology
indicates.

Overall it is clear that utilizing the NWP data for the purpose of probabilistic
forecasting vastly outperforms climatology. We have successfully improved
predictive accuracy at all quantile levels and we have tightened the distribution
bands around the expected value most pertinently for the lead times closest to
forecast issuance, but also for later periods.

Some questions remain, however: Can we find a better performing model
utilizing NWP data? And is it possible to extend skill for an extended period
of time after the initial 15-23 days? In the following the focus, unless otherwise
stated, will lie on the 0.9-quantile. This is not only done for ease of presentation,
but also because it is of application interest.
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Figure 6.3: Probabilistic PC forecast (at 6:00) for Winter 2013/14, comparing
Climatology (blue shading) with NWP-WQE (red lines) over the quantile range
of the first principal component. The black line is the observed first PC over
the period. The NWP-WQE model draws a tighter distribution that is slightly
downward-shifted compared to the Climatology.

6.3 Quantile Regression Models

Quantile Regression (QR) models offer more flexible modelling options than
the WQE-model through coefficients that adjust the impact of the NWP input
(Section 3.4). By introducing coefficients we want to 1) find out whether we can
obtain more accurate forecasts, and 2) investigate properties of the NWP input.
This section is split into three parts. We will first look at QR-models with just
NWP input. We will then investigate whether time covariates improve model
performance. Lastly, we will assess the performance of the best QR-models
compared to the basic WQE-model. We find that the QR-models offer very
little improvement compared to the WQE-model.

QR-Models with NWP Input

We start this section by looking at the simplest NWP-QR model. This uses the
WQE output, qα

t|t−k, as a single predictor and introduces the quantile specific
weight, βα

1 , but has no intercept:

C1,α
t = βα

1 q
α
t|t−k (6.4)

In the last section we saw that the performance of the NWP-WQE model
is dependent on lead time. Our first batch of models will look at several

75



6.3. Quantile Regression Models

Pinball Loss (α = 0.9) for Days:
Model 1:20 21:40 41:60 1:60 61:125
1 day 6.367 9.422 8.870 8.217 9.166
2 days 6.358 9.413 8.867 8.211 9.159
4 days 6.354 9.417 8.862 8.209 9.147
8 days 6.337 9.404 8.841 8.192 9.134

16 days 6.329 9.397 8.838 8.186 9.127
32 days 6.327 9.383 8.831 8.178 9.127
64 days 6.345 9.389 8.809 8.179 9.125

125 days 6.356 9.398 8.818 8.189 9.115
NWP-WQE 6.329 9.382 8.803 8.172 9.140
Climatology 9.346 9.624 9.204 9.361 9.330

Table 6.2: Mean test pinball loss over lead time intervals at the 0.9-quantile for
QR-models of the form (6.4) for different training intervals. The best training
period among QR-models performs at the same level as the NWP-WQE model.
Bold indicates best score among training interval models for each lead time
segment.

implementations of model (6.4) where we vary the length of the training
periods to cover different lead time intervals. In this manner we can investigate
whether different lead times might exhibit differing relations between the forecast
ensemble quantile and the temperature. Thus, the estimated coefficient β̂1,τ ,
which is specific for lead time interval τ , is found for different models by
restricting the training period to time points t ∈ τ :

β̂α
1,τ = argmin

βα
1 ∈R

∑
t∈τ

ρα(C1
t − βα

1 q
α
t ), (6.5)

where ρα(·) is the pinball loss function for quantile α, and C1
t is the observed

first temperature principal component at time t. We look exclusively at the
0.9-quantile for segmented lead time training intervals where τ has the length
of 1, 2, 4, 8, 16, 32, 64 or 125 lead time days. An alternative to this segmented
implementation would be a set-up with rolling intervals.

Overall, the results for the best training intervals (Table 6.2) only show
an incremental improvement over the NWP-WQE model at some lead time
intervals (days 1:20 and 61:125). Whether we train on smaller or larger lead time
intervals is also of low importance, but the longest intervals perform slightly
better. The QR-models and the NWP-WQE show the same trends across lead
time intervals: The best predictive performance comes from the first period
after forecast issuance. The best model for the first two periods uses a 32-day
training interval, the best for days 41-60 used 64 and the best for the remaining
lead time was the model trained on 125 days. Since we generally care more
about performance before 60 days out, the 32-day model is preferable, noticing
that its performance was fairly good over the last two lead time intervals as well.
Model performance for this model is virtually identical to the NWP-WQE model
over the 60-day period. Based on these models, little is gained predictively by
adding an adjustment in the form of the β-coefficient to the NWP input.

76



6.3. Quantile Regression Models

0.950

0.975

1.000

1.025

1.050

0 10 20 30 40 50 60 70 80 90 100 110 120
Lead Time (Days)

C
oe

ffi
ci

en
t V

al
ue

Training Interval:

2 Days

4 Days

8 Days

16 Days

32 Days

125 Days

β1−Coefficients for NWP1 in Model (7.4) at 0.9−quantile

(a) β1-coefficients (6.4), α = 0.9.
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(b) β1-coefficients (6.4), α = 0.5.
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(d) β2-coefficients (6.7).
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Figure 6.4: Mean β-coefficients for models (6.4), (6.7) and (6.10). While model
(6.4) adjusts the WQE estimate (qα

t|t−k) slightly upward, the introduction of
NWP2 (Figures 6.4c and 6.4d), and other predictors (Figure 6.4e) decreases
the influence of NWP1. Note that the y-axis range varies between plots.
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To see the impact of the NWP-QR quantile predictor at different lead
times we can look at how the model coefficients (averaged over all forecast test
periods) for different training periods change over lead time (Figure 6.4a).2
Overall the coefficients concentrate around a level slightly above 1, indicating
that only a slight upward adjustment of the input variable is performed. The
predictive distribution of the NWP-WQE model was set substantially lower
than climatology, and the QR-model slightly adjusts this back. The models
using the smallest interval are, as can be expected, the most variable. The
adjustment is smaller at the beginning reflecting the higher predictive quality
of the input at this stage. This adjustment might be an artifact of the post-
processing of the NWP ensemble members forcing the mean and variance to be
equal to those for the climatology (Section 4.3). At the extreme quantiles this
process might not be spread out enough. We also check the median to see if
the same overdispersion effect is present there (Figure 6.4b). We find that the
coefficients for the median (α = 0.5) is on the same order as at the 0.9-quantile,
but now the adjustment is made slightly downwards. Because the magnitude of
these adjustments are so small and the difference in predictive performance is
negligible, we consider these adjustments as being of little importance.

Before moving on to include time-covariates in the modelling we also fitted
models that included NWP2. This predictor consisting of forecasts that are
issued at least one month from the target date. We therefore introduce the
restriction k > c, where the lead time k has to be above c ∈ {28, 29, 30, 31} · 4,
a month dependent cutoff value. The model including just NWP2 has the form:

C1,α
t = βα

1 q
α
t|t−k2, (6.6)

where k2 satisfies k2 > c at each month. As we have seen at this level of lead
time, the NWP is scarcely better than climatology. The rationale for including
NWP2 as a predictor is twofold. Firstly, to see if it might improve predictive
performance through creating a model averaging effect. And second, to look
at the impact this addition has on the weights of NWP1. To assess this we
introduce the model:

C1,α
t = β1q

α
t|t−k1

+ β2q
α
t|t−k2

, (6.7)

where k1 has no restrictions. Including NWP2 naturally means we restrict the
lead times by roughly a month. This means we cannot use the 125-day set-up,
the longest will be a 97-day one (the maximum lead time for NWP2). For
training intervals of 32, 64 and 97 lead time days we tested linear and spline
(df = 3) versions of models (6.4), (6.6), and (6.7) with and without intercepts.
The results (Table 6.3)3 show that the spline models with an intercept do
consistently better, but they offer only small improvements over the linear
model versions. Including an intercept term also improves prediction for all
models. For linear models the effect of the intercept is small, but for spline

2Whether we choose an intercept in these models or not has very little impact on the
model coefficients, as since the relation between predictor and outcome is so close to 1-to-1,
when the predictor is 0 the expected value (the intercept mean) is also going to be close to
zero. Here we show the model without intercept. By omitting the intercept we allow for the
interpretation of the coefficient as a direct weight adjustment.

3Notice that the coefficients diverge slightly from previously reported here, because the
inclusion of NWP2 lead to very slight differences in the formation of the training sets.
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Pinball Loss (0.9) for Training Periods:
No Intercept Intercept

Model 32 64 97 32 64 97
NWP1 8.180 8.180 8.187 8.166 8.170 8.176
NWP2 9.126 9.126 9.124 9.104 9.103 9.103
NWP1+NWP2 8.156 8.182 8.192 8.150 8.171 8.180
s(NWP1) 9.156 8.689 8.678 8.155 8.166 8.175
s(NWP2) 10.42 10.390 10.385 9.083 9.080 9.079
s(NWP1)+s(NWP2) 8.880 8.352 8.342 8.147 8.163 8.172

Table 6.3: Mean test pinball loss for linear and spline versions of QR-models
(6.4), (6.6) and (6.7) with and without intercepts for three different training
intervals at lead time days 1:60. Bold indicates best parametrization.

models there is a considerable difference, especially for shorter training intervals.
With regard to the NWP2 predictor we see that the spline model does slightly
better than the linear one. And the results are roughly similar to the NWP1
model if we push lead times back a month and look at the interval between
30 and 90 days (this yields a pinball loss of 9.054). The addition of NWP2 to
NWP1 represented a slight improvement for the shortest training intervals (32
days), but not for the longer ones. The best model among these is the spline
model with both NWP predictors, which has a very modest skill (0.006) with
reference to the NWP-WQE model.

The linear model (without intercept) which combines the NWP1 and NWP2
predictors (6.7) can be interpreted as a weighted mean of forecast outputs
issued one month apart. By examining it we can uncover the degree to which
the introduction of NWP2 acts as an adjusting factor on the β1-coefficient of
NWP1. Figure 6.4c shows the average β1- coefficients over the test periods from
model (6.7) for six training intervals. For the model (shown in red) trained
on all available lead times (97 days) the β1-coefficient is 0.986. This is slightly
down-shifted compared to the model (6.4) with only NWP1 (β1 = 1.014) shown
in Figure 6.4a. When using this training period interval the impact of the
NWP2 predictor (shown in red in Figure 6.4d) is fairly small (β2 = 0.032), and
did not improve performance (Table 6.3). For the other training intervals the
general trend is that the higher the lead time used to train on, the lower the
weight of the β1-coefficient, and thus the lower the reliance on NWP1. For lead
times under 16 days, model (6.7) weights the NWP1-predictor close to 1 while
the NWP2-coefficients lie slightly below 0. This reflects the good performance
of the NWP forecasts immediately after they are issued. Between 16 and 64
days, model (6.7) increases the size of the weights for NWP2, while the NWP1
weights are correspondingly decreased. After 64 days the predictive quality
of NWP1 has degraded to a point where the model (6.7) consistently weighs
the NWP2-predictor higher. We should not interpret this to mean that older
forecasts are better at these lead times. Rather it corroborates our previous
finding that as the lead time increases the performance of the NWP forecasts
reverts to climatology.

These results illustrate two aspects of the NWP forecast data. Firstly, they
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Parametrization:
Covariate Cont. Factor Sinusoidal Spline
Intercept 22.22 − − −
Year 22.44 23.88 − 23.23
Season 18.37 13.48 14.04 −
Week 21.36 10.16 9.96 9.99
Month 21.33 10.48 10.60 10.48
Hour 22.22 22.12 22.22 22.12

Table 6.4: Mean test pinball loss for univariate QR-models of the form (6.8), over
lead time days 1:60, at the 0.9-quantile. Bold indicates best parametrization,
underlined indicates best overall.

demonstrate how little the model averaging effect of adding older forecasts has
on prediction accuracy. And secondly, they show how fast the NWP forecast
degrade in forecast quality in principal component space at the hourly level.
In Section 6.5 we will look at methods that enable us to observe skill in the
NWP-based models at longer lead times by focusing on higher aggregate levels.

QR-models with Time Covariates

In this section we will investigate how much improvement can be gained by
adding time covariates to the QR-model set-up. We will report results only
from the longest training interval (97 lead time days), both for convenience, but
also because models including interactions encountered difficulties when using
shorter lead time training intervals. We start by looking at parametrizations of
single time covariates, now with the aim of forecasting temperature principal
components. These models are on the form:

C1,α
t = βα

0 + f(xt), (6.8)

where xt is the time covariate and f(xt) is a parametrization described in eq.
(5.4). The factor parametrization is the best for ‘hour’, ‘month’ and ‘season’
(Table 6.4). The continuous version is the best for ‘year’, while the sinusoidal
was the best for ‘week’. ‘Week’, ‘month’ and ‘season’ all seem to be good
predictors, as they represent clear improvements on the intercept model.

Having found good parametrizations for each of the time covariates we
combined them and ran four models on the form:

C1,α
t = βα

0 + f(xt) + g(ht, x
(a)
t ), (6.9)

where f(xt) is a combination model which includes the best parametrization
of each time covariate found above. The four models differ only in g(·), which
is a factor interaction between hour, ht, and an annual cycle term, x(a)

t . As
with the demand problem in Chapter 5, we are only exploring a limited part of
the model space. The results for models of the form (6.9) (left-most column
of Table 6.5) show that all versions of (6.9) improve upon climatology. The
best interaction term was between ‘hour’ and ‘season’. This model has a skill
relative to climatology of 0.098. Thus by utilizing only time information we can
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improve upon the climatology model quite substantially without any additional
temperature data.

The last batch of models in this section includes both time and temperature
data, we refer to these as QR-combined models. We tested 16 such models of
the form:

C1,α
t = βα

0 + f(xt) + g(ht, x
(a)
t ) + h(qα

t|t−k1
, qα

t|t−k2
) (6.10)

Here, building upon the set-up of (6.9), we add NWP1 and NWP2 through the
function h(·). For each time covariate set-up we looked at 3 versions of h(·):

• A linear model including just NWP1, i.e. with h(·) = qα
t|t−k1

.

• A linear model including both NWP terms with h(·) = qα
t|t−k1

+ qα
t|t−k2

.

• A spline version of the latter where h(·) = s(qα
t|t−k1

) + s(qα
t|t−k2

).

The predictive performance of these models are shown in Table 6.5. For all
versions of h(·), the best interaction term was again ‘hour’ and ‘season’. Adding
NWP2 leads to slightly improved predictive performance over all interaction
versions. The linear and spline implementations have very similar performance.
The best among these models makes use of both NWP predictors, time covariates,
as well as an interaction ‘hour’ and ‘season’, and had a pinball loss of 8.075. It
does, however, not represent a big improvement, as it only has a modest skill
of 0.012 with reference to the NWP-WQE model. Compared to climatology it
has a skill score of 0.137, versus the NWP-WQE which had 0.130. In contrast
with the demand problem, very little is gained by using time covariates. The
temporal information these variables represent seem already to be incorporated
in the NWP ensemble members. When time covariates are included, adding
NWP2 to the model gives a slight performance increase.

Linear Spline
Set-up Time-vars NWP1 NWP1+2 NWP1+2
Combination 9.050 8.168 8.100 8.098
Comb+h:w 9.203 8.651 8.561 8.584
Comb+h:m 8.907 8.265 8.163 8.170
Comb+h:s 8.920 8.164 8.075 8.082
Intercept − 8.176 8.195 8.180

Table 6.5: Mean pinball loss, over lead time days 1:60, for QR-models with just
time covariates on the form (6.9), and QR-models with both time covariates and
NWP input on the form (6.10). Bold indicates best parametrization, underlined
indicates best overall.

Even though very little improvement in predictive performance was gained
by adding time covariates these models change the impact of the NWP predictor.
We can illustrate this (Figure 6.4e) by looking at an average of β1-coefficients
for the QR-combined model (6.10) with g(·) = 0 (without interaction) and
h(·) = qα

t|t−k1
(only NWP1). We choose this model for illustration purposes

because models with interactions had problems running for shorter training
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intervals. We can see that for the longest training interval the coefficient for
NWP1 is around 0.6. This means that considerably less information from NWP1
is used for this model in forming the predictions. For shorter training intervals
we see that the further from forecast issuance the less weight is given to NWP1.
The model is more and more relying on the time covariates. This is, as we
have seen, because at larger lead times, at the hourly level, the NWP predictor
reverts to climatology.

Model Assessment

That the models (both WQE and QR) based on NWP ensemble forecasts perform
better than climatology is perhaps not surprising given that these forecasts are
targeting temperature. We have now shown that the NWP forecasts are directed
at temperature also at the quantile level in principal component space for the
first principal component. We have also shown that neither the introduction
of coefficient weights, of lagged forecasts (NWP2), or of time covariates have
improved predictive performance more than slightly.

To check if these QR-model results represent an actual improvement upon
the NWP-WQE-model we ran three permutation tests (see note in Section 5.5).
Using 10000 permutations the test results show clearly that both the WQE
and the best QR-model outperforms climatology. When compared against each
other we observe a p-value of 0.0564. This is close to, but above, the standard
significance threshold at 0.05. The results of the QR-model are not significantly
different from the WQE-model. As mentioned in the previous chapter, we do
not have exchangeability, so the tests are meant more as a heuristic device than
a final say.

Permutation Tests
Climatology WQE

Model Obs. Skill p-value Obs. Skill p-value
WQE 0.131 0.0000 − −
QR-comb 0.140 0.0000 0.011 0.0564

Table 6.6: Permutation test results comparing WQE (6.3) and QR-comb (6.10)
with Climatology (6.1) and each other over lead time days 1:60.

Even if the tests indicate that the QR-model tests are not statistically
significant compared to the WQE model, it is clear that the NWP-based models
do represent an improvement with reference to climatology. This improvement
is subject to considerable variability in predictive accuracy by target month.
Winter months are the hardest to predict; summer months being the easiest.
Figure 6.5 illustrates this monthly variation by showing the distribution of
the pinball loss across months for both NWP-WQE and climatology (the
performance of NWP-QR is almost identical). Note that the x-axis is cut for
presentation as the upper tails of these empirical distributions are very long
and thin, with outlier values at a maximum of 160.49. In all months we can see
a red climatology shadow to the right of the NWP-distributions indicating the
upward shift (and worse performances) of the climatology model.
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Figure 6.5: Pinball loss distribution by month.

The left-most plot shows the distribution of the difference in performance
between the two models for each predictive observation. Positive values mean
the climatology had a bigger loss. Even though the shape and especially the
spread of the difference distributions vary by month, the share of predictions
that are better is roughly the same (ca. between 25−35%). Notice especially the
rarity with which the NWP model is more than 5 points worse than climatology
compared to the other way around.

Another way of quantifying the improvement is to look at the fraction of
predictions with a lower loss than climatology (Table 6.7). We see that overall
for the days 1:60, 70.2% of predictions from the NWP-WQE model had a lower
loss than for later periods. The best QR-combination model does slightly better
at 71.7%, where improvement compared to NWP-WQE comes after the 10 first
days.

As a final assessment of the performance of the WQE and the best QR-model
we also compute the continuous ranked probability score (CRPS), which we
approximate by averaging over the pinball loss at each quantile (Section 3.8).
For lead time days 1:60, over quantiles 0.1-0.9, the climatology CRPS is 15.835
while the NWP-WQE obtains 13.762, which yields a CRPS skill score of 0.131.
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Improvement Ratio Days:
Model 1:10 11:20 21:30 31:60 1:60
NWP-WQE 0.833 0.669 0.665 0.681 0.702
QR-comb 0.833 0.691 0.680 0.700 0.717

Table 6.7: Pinball loss improvement fraction for the NWP-WQE model (6.2),
and the best QR-model (6.10) at 0.9-quantile. For each lead time interval it
shows the ratio of predictions targets for which each model improves upon
climatology.

For the best QR-model we observe a slight improvement across all quantiles
for a CRPS score of 13.663, and a CRPS skill score of 0.137. With respect to
NWP-WQE, the CRPS skill score for the best QR-model is 0.007.

6.4 Re-weighted Quantile Estimation

The NWP-based models for temperature forecasting investigated in the previous
sections have shown a marked improvement on climatology. But at the 6-hourly
level the period of substantial model skill after forecast issuance only lasts
for 15 days. Since seasonal NWP forecasts are issued on the first of every
month, there is a period of 10-15 days at the end of each month where these
models show little or no skill. We will now look at a method for extending
model skill past this initial period. This will be done by re-weighting the NWP
principal component inputs from each ensemble member based on the most
recent temperature observations made available after forecast issuance. By
weighting the NWP ensemble members according to their recent performance,
the re-issued forecasts will to a larger extent be based on the members that
recently performed the best (Section 3.4).

The re-weighting procedure is applied at each target time t for a specific
lead time k, to the first principal component of the temperature grid for each
NWP ensemble member, m. Producing the re-weighted quantile estimate, q̃α

t|t−k

involves finding the multiplicative weight, w̃m
R , which adjusts the impact of the

principal component of each NWP member:

q̃α
t|t−k =

M∑
m=1

w̃m
RC

m
t|t−k. (6.11)

As before, k marks the lead time interval from forecast issuance at the 1st of
the month, while R marks the time of forecast re-issuance. The procedure for
obtaining the weights are described in Section 3.4.

To test the predictive impact of the re-weighting procedure we ran a similar
rolling-cross validation set-up as described above (Section 6.1). We utilize a
3-month (97 days) lead time training interval over the same training periods as
for the previous NWP models. Like previously, the focus is on forecasting the
temperature principal component at the 0.9-quantile. The re-weighting is based
on observations from one of three different re-weighting intervals. We either
use: i) 4 observations of PC temperature from the 15th of every month; ii) 8
observations from the 14-15th of every month; or iii) 12 observations from the
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Pinball Loss
Days after Re-issuance:

Model Re-weight period 1:5 1:10 1:15
NWP-RQE 1 day 6.397 7.813 8.260
NWP-RQE 2 days 6.542 7.925 8.326
NWP-RQE 3 days 6.647 7.975 8.358
QR-NWP1 1 day 6.482 7.862 8.304
QR-NWP1 2 days 6.629 7.966 8.367
QR-NWP1 3 days 6.711 8.003 8.390
QR-combined 1 day 6.674 7.817 8.206
QR-combined 2 days 6.858 7.900 8.254
QR-combined 3 days 6.843 7.928 8.270
NWP-WQE − 8.555 8.821 8.962

Table 6.8: Mean pinball loss for versions of QR-models (6.3), (6.4), and (6.10),
with re-weighted NWP input for three re-weighting periods and three loss
intervals after completion of re-weighting period. Results for the un-weighted
NWP-WQE model shown for reference. Bold indicates best performance for
loss interval.

13-15th of every month. After the re-weighting period is finished, we re-issue
the forecast with updated predictions from the 16th and onward. Compared to
previous sections, the test periods differ as we in this method in effect discard
the test observations for the 15 first days the test periods. The cut-off-date
of the 15th is in principle arbitrary. This procedure can be initialized at any
desirable time point after having obtained new observations. It is chosen to
illustrate that we can re-gain skill from a period where the skill of the original
model is dropping.

Having obtained the re-weighted principal component values for each member
we ran three model set-ups:

1. NWP-RQE: It uses the raw re-weighted values as a direct estimate of the
temperature principal component quantile, analogous to the NWP-WQE
model (6.3).

2. QR-NWP1: A basic QR model (6.4) with NWP1 as sole predictor
(including an intercept).

3. QR-combined: Using the best performing combined QR model of the
form (6.10).

Thus the tests are performed using the models from Sections 6.2 and 6.3.
The only change is the input data, which now consist of q̃α

t|t−k, which is based
on re-weighted NWP temperature principal components. For each training
set-up we tested to find the best performing tuning parameter γ, which adjusts
the size of the weights. For each of the three setups we tested 25 γ-values in
the range between 0.000001 and 0.01 in an exponentially increasing sequence.

The results for the best performing γ-value for each model and re-weighting
period is shown in Table 6.8. It is clear that the shorter the re-weighing interval
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Figure 6.6: Pinball loss for NWP-RQE model (6.3) by values for tuning
parameter γ for 4 loss periods after 1 day of re-weighting. Filled in dots
mark the best performing γ-value for each period.

the better the model performance. We want to weight on values as close to the
ones we are predicting as possible. Based on these results we see no need to test
re-weighting intervals that go further back in time. For the first two test periods
the NWP-RQE models show the best performance, while the QR-combined
models are markedly a step behind the others. The reason for this lies in the
composition of the QR-combined model, which in addition to the NWP input
is also composed of time covariates. As we saw in Figure 6.4e the β-coefficient
for the NWP1-predictor plays a smaller role in these models than for models
of the form of (6.3) and (6.4). Therefore, any adjustments made to this input
in the QR-combination model will have less impact than in the other models.
The QR-combined model does, however, perform better for the overall 15-day
period. This is largely because of performance after the skill gain has dropped.
This might be more indicative of an over-adjustment on the part of the simpler
models at the end of the 15-day period. It is also notable that the QR-NWP1
model has less effect of the re-weighting than the NWP-RQE across all time
periods. Above we have reported the results for the best performing model at
each loss interval using the best tuning parameter γ for that interval. The size
of γ controls the size of the weight adjustments; larger γ’s corresponding to
larger adjustments. In Figure 6.6 we see the performance of different γ-values
for the NWP-RQE model re-weighted over 1 day (4 observations). The same
general pattern is repeated for the other models. The curves for the different
loss intervals all have a similar shape. Performance changes little when weights
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Figure 6.7: Predictive adjustment for NWP-RQE during example month
(December 2013).

and therefore also weight-adjustments are low. At the medium range of γ-values
the curve dips and we find our chosen γ-values properly located close to the
minimum of these curves. Which γ to choose depends on the interval of interest.
Larger weights do better at shorter intervals. Over most runs the best γ-values
were to be found in the range between 0.000215 and 0.00147. Setting γ = 0.001
might not be a bad agnostic choice, it is also the value for which we obtain the
best performance for the first 5 days after re-issuance.

For an example month (December 2013) we can see the effect of the
adjustment at the level of predicted principal component at the 0.9-quantile
(Figure 6.7). The performance of the un-adjusted WQE model (blue) has two
general phases that we can recognize from this plot. At the beginning of the
month this model is informed by high accuracy forecasts. Thus it draws a
predictive distribution very close to the observed values. After the 10th, the
forecast information looses accuracy and the predictive distribution is drawn
much looser and follows climatology to a greater extent. Even if the WQE
predicted values keep above the observed values, the increased distance indicate
a higher loss than earlier in the month. Its performance during the latter half
of the month is slightly worse to that of climatology (grey). The first forecast
of the RQE-model is made on the 16th. The improved performance obtained by
re-weighting can be clearly seen during the first five days after re-issuance. The
RQE-model up-weighs information from those ensemble members that most
accurately followed the dip in the observed principal component values around
the 15th. However, the trajectories of the up-weighted ensemble members are
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Figure 6.8: Comparing pinball loss over lead time for NWP-RQE for different
γ values (best γ is marked red) against climatology and NWP-WQE (black).

in general not the best for an extended period of time. At the end of the
month both the WQE and the RQE fail to track the low principal component
values (corresponding to a higher temperature), though the latter is performing
considerably better during this example month.

To illustrate the gain in performance achieved by re-weighting we can look
at Figure 6.8, which compares the performance of the re-weighted NWP-RQE
model (red) with the NWP-WQE and climatology by lead time. The re-
weighting period is finished on the 15th at 24:00 (dotted line). The performance
of the re-weighted models is best immediately thereafter. And it is comparable
to the performance at the beginning of a forecast month (roughly days 1:3).
The loss then increases fairly rapidly and by 5 days after re-weighting it settles
into the same pattern as the other un-weighted models, reverting to climatology
by day 20. Performance for other γ-values (grey) show similar behaviour, but
with less gain in performance.

Figure 6.9 shows the skill score relative to climatology for all three set-ups,
using 1 day of weighting and γ = 0.001, the best scoring setting for the first 5
days. The skill of NWP-RQE and QR-NWP1 are similar throughout with the
former having a slight advantage. The QR-combined model is slightly worse
the first 5 days before thereafter consistently showing higher skill. In Table
6.9 we show the skill score for the same three models both with reference to
climatology and to the same model without re-weighted input. In contrast to
the previous table we now show results for three segmented lead time periods.
For the first five days after re-weighting the NWP-RQE model has the highest
skill both with reference to climatology and compared to its own previous
performance without re-weighted inputs. The performance of QR-NWP1 is
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6.4. Re-weighted Quantile Estimation

Skill Score (Days after R)
Model Reference 1:5 6:10 11:15
NWP-RQE Climatology 0.313 0.039 0.017
QR-NWP1 Climatology 0.298 0.027 −0.024
QR-combined Climatology 0.286 0.005 −0.033
NWP-RQE NWP-WQE 0.238 -0.011 −0.013
QR-NWP1 QR-NWP1 0.226 −0.022 −0.053
QR-combined QR-combined 0.181 −0.079 −0.090

Table 6.9: Average skill score for models with re-weighted inputs with reference
to climatology (top) and with reference to the same models without re-weighted
input (bottom). Bold indicates best parameterization.

slightly worse, while the QR-combined model is a step behind the other two. In
the following to segmented periods 6-10 and 11-15 days after re-issuance there
is a sharp drop-off in skill for all re-weighted models. We are seeing some slight
improvements compared to climatology in this period, but compared to the
unweighted models, the re-weighted models do worse.

In this section we have shown that the re-weighting procedure can obtain
a short term skill increase on average over the test periods lasting for up to 5
days. The skill level obtained is (for a short period) comparable to the skill at
the beginning of a forecast month. We have here shown the performance of the
re-weighting using only one re-weighing period, but it can be initiated at any
given time after NWP forecast issuance.
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Figure 6.9: Mean skill score by lead time for models with reweighted input,
with reference to climatology.
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6.5. Forecast Aggregation

6.5 Forecast Aggregation

So far, we have been looking at the performance of the probabilistic PC
temperature forecasts at the hourly level (with 6-hour intervals). We have
seen that at this level of granularity model skill is negligible after 15 days. By
re-weighing the principal components of the forecast ensemble members, based
on the most recently observed temperature, we can regain skill for short periods
after forecast re-issuance. The seasonal NWP forecasts are, however, meant to
be skillful at lead times far exceeding 15 days (Section 4.3). In this section we
will show that we can make model skill apparent at longer lead time horizons,
in principal component space, by aggregating forecast predictions over longer
time intervals.

By aggregating predictions over longer time intervals the low-frequency
aspect of the series, the trend and cyclical patterns, might become apparent
(Nystrup et al. 2021). For example, if an event happened on Tuesday, we are
wrong if we predicted it would happen on Wednesday, but correct if we predicted
it would happen this week. A forecast might be correct in tracking the path of
e.g. a high pressure system, but at a low hierarchical forecast level (e.g. hourly
predictions) a model might miss its movement to a specific location by a couple
of days. Thus the model’s ability to track the path goes unrewarded at a low
aggregation level. By aggregating over a sufficiently large period, however, the
skill of the model might be made apparent (Section 3.6). In our presentation
we will focus on the 0.5- and 0.9-quantiles.
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Figure 6.10: Pinball loss by lead time using post-hoc aggregation for model QR-
NWP (6.4) with reference to climatology at 0.5-quantile for different aggregation
intervals.
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6.5. Forecast Aggregation

Post-hoc Aggregation

A relatively easy way of aggregating predictions might be termed the post-hoc
aggregation method (Section 3.6). Instead of re-estimating the model for larger
intervals we are working with quantile predictions already made at the base
6-hourly level. We are interested in the quantile, α, of an aggregate, namely
Sα

1:T = ( 1
T

∑
t=1 Ct)α. To estimate it using post-hoc aggregation we take a

simple average of the forecasted quantile values: Ŝα
1:T = 1

T

∑T
t=1 Ĉ

α
t , over an

interval of interest, t ∈ 1, ..., T . We compare this to the average of the observed
temperature principal component C̄1

1:T , using the pinball loss function, ρα(·),
at quantile α:

J1:T = ρα(C̄1
1:T , Ŝ

α
1:T ), (6.12)

where J1:T is the loss over the aggregated interval. We apply this method to
forecast outputs from the QR-model (6.4) with intercept: Ĉα

t = β̂0 + β̂1q
α
t|t−k.

In this application we have used a rolling average where the mean of the
observations at the extremes of the lead-time interval are filled in. In Figure
6.5 we see the results for 6 aggregation levels with the median, α = 0.5, as the
target. The top black line is the pinball loss for the base un-aggregated 6-hour
level. The colored loss curves below clearly follow the behaviour indicated by
Jenssen’s inequality. The larger the interval under consideration, the lower the
loss.

The pinball loss and skill score for lead time days 1:60 is shown in Table
6.10 for the 0.5- and 0.9-quantile. The general behaviour for both climatology
and the QR-model is the same at both quantiles. For all models we observe the
pinball loss decreasing when the length of the aggregation interval increases.
We also observe that the skill score at the 0.5-quantile increases by aggregation
length. A similar picture is painted at the 0.9-level with a large caveat: the
method is not accurate at this quantile. As discussed in Section 3.6 the mean
of the quantile does not accurately reflect the quantile one is interested in
estimating. This is especially problematic for quantiles further away from the
median, for which we are especially interested. Its use here is only as a reference
to see the difference in estimation compared to a proper estimation technique.

Pinball Loss 1:60 Skill Score 1:60
0.5-quantile 0.9-quantile 0.5 0.9

Aggreg. Climat. QR-NWP Climat. QR-NWP - -
6-hour 20.548 17.740 9.391 8.178 0.137 0.129
2 day 19.473 16.569 9.001 7.755 0.149 0.138
4 day 18.311 15.433 8.623 7.402 0.157 0.142
8 day 16.369 13.700 8.150 6.901 0.163 0.152
15 day 14.173 11.821 7.785 6.510 0.166 0.164
30 day 11.776 9.705 7.550 6.307 0.176 0.164

Table 6.10: Pinball loss and skill score using post-hoc aggregation for model
QR-NWP (6.4) with reference to climatology at 0.5- and 0.9-quantiles. Bold
indicates best parameterization.
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Copula Aggregation

A proper way of performing quantile aggregation has to take account of the
joint distribution of the time points one wants to aggregate over. The other
aggregation method we consider is the Gaussian Copula (GC) method which
does exactly this (Section 3.4). It involves simulating from the correlation
matrix of the joint distribution of the predicted values in the interval of interest.
One then forms the prediction by taking the weighted sample quantile over a
set of simulated aggregates, S(m), using the WQE function:

Ŝα = Wα
S (S(1), ..., S(M)). (6.13)

Just as for the post-hoc method we are interested in estimating the quantile of
the mean PC temperature: Sα

1:T = ( 1
T

∑
t=1 Ct)α.

Like above, we look at the performance of the QR-model (6.4), which means
we use this model to obtain the marginal distributions at each target time t.
The level of precision of the estimation of the predictive CDF can be set at
any level. We opted to use two different settings, estimating the quantile range
using either 100 or 1000 quantile values. By increasing the number of quantile
values we in effect increase the accuracy of the estimate of the correlation matrix
we simulate from. For the GC method we also chose a computationally less
demanding, segmented, interval structure instead of the rolling average used in
the post-hoc method in the previous section.

Figure 6.11 showcases the pinball loss test results for a set of aggregation
intervals (between 2 and 60 days) for QR-model (6.4) using 1000 quantile values.
We observe the same general pattern implied by Jensen’s inequality as for the
post-hoc method. The longer the interval, the lower the pinball loss. The slight
bumps in the loss at points around lead times 30, 60, and 90 are artefacts of an
unequal number of lead times for each prediction.

The results for the first 60 lead days are summarized in Table 6.11. Most
importantly we see that the skill score of the QR-model increases with the length
of the aggregation interval. We also observe that the number of quantile values
used to estimate the predictive CDF does not matter much for the climatology
model. For the QR-model the number of quantile values is not important for
the shortest aggregation intervals, but it does seem to matter for the larger
ones. At aggregation intervals 30 and 60 days the increase in precision when
estimating the correlation matrix using 1000 quantile values seem to lead to
better results.

Looking exclusively at the 0.9-quantile there are noticeable differences in
results between the GC and the post-hoc method. The GC pinball loss for
both climatology and the QR-model decrease much faster than for the post-hoc
method. This difference does not translate into a difference in skill score, at
least not for the shorter aggregation intervals. However, we do see a difference
for the 30-day aggregation interval. While the post-hoc method has a skill score
of 0.164, the best GC-method obtains 0.223. Bear in mind that this result does
not mean that the GC-method has achieved a better predictive score. Rather, it
means that by taking account of the correlation structure between predictions
we should trust the GC-estimate more in accurately portraying the skill of the
model over the aggregation interval.

In Figure 6.12 we see the skill score for QR-model (6.4) using 1000 quantile
values. We first observe that the 60-day aggregation interval has a positive skill
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6.5. Forecast Aggregation

score, relative to climatology, throughout the 120-day lead time period. The
30-day aggregation has a positive skill lasting for 60 days. While the 15- and
8-day aggregations are skillful up until around 30 days, the shortest intervals
show positive skill lasting to around 25 days. It is clear that by increasing
the length of the aggregation interval we are seeing the period of model skill
prolonged substantially.

In Section 6.2 we observed that model skill at the 6-hour level disappeared
after 15-23 days. By employing the GC aggregation method we take account
of the correlation structure between PC temperature observations. Utilizing
this to form aggregations we have been able to make model skill for principal
component temperature forecast models apparent at longer lead times. We
expect to see similar results for other quantiles than the 0.9-quantile. The results
presented here are, however, based on single model runs, each of which being
computationally heavy. Since the GC method involves simulating predictive
values it is seed-dependent. To improve the robustness of the results, more
model runs would be necessary.

Pinball Loss 1:60 Skill Score 1:60
Climatology QR-NWP

Aggregation 100 1000 100 1000 100 1000
1 day 9.057 9.054 7.935 7.943 0.124 0.123
2 days 8.864 8.860 7.712 7.712 0.130 0.130
4 days 8.416 8.379 7.240 7.251 0.140 0.135
8 days 7.630 7.661 6.494 6.471 0.149 0.155
15 days 6.605 6.590 5.529 5.585 0.163 0.152
30 days 5.323 5.307 4.368 4.121 0.179 0.223
60 days 4.970 4.994 3.517 3.469 0.292 0.305
6-hour 9.391 8.178 0.129

Table 6.11: Pinball loss and skill score using copula estimation for QR-
NWP with reference to climatology at the 0.9-quantile. Bold indicates best
parameterization. Results are shown for estimation methods using either 100
or 1000 quantile values. Non-aggregated (6-hour) results shown for reference.
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Figure 6.11: Pinball loss for QR-model (6.4) for six aggregation intervals using
GC aggregation estimation at the 0.9-quantile.
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CHAPTER 7

Demand Forecasting with NWP
Temperature PCs

The results from our investigation of the electricity demand problem in Chapter
5 showed that the best GAM-PC model represented a substantial improvement
on both the climatology demand model (5.2) and all time covariate models.
This was under the assumption that we, at the time of forecast issuance, had
access to near-future temperature. In Chapter 6 we saw that we could utilize
NWP temperature forecasts as a foundation for forming probabilistic forecasts of
temperature PCs. At the hourly level our models showed positive skill compared
to temperature climatology (6.1) up to 15 days from forecast issuance.

In this chapter we will merge these two approaches. We will fold the
probabilistic forecasts of PC temperature as feature inputs into the demand
model. In Section 7.1 we utilize NWP forecasts of PC temperature as inputs
into the GAM-PC1+2 model to form a point forecast of electricity demand. We
contrast the performance of this point forecast with feeding the same model
with two other forms of temperature inputs: 1) climatology estimates of PC
temperature (the real-life baseline alternative); 2) observed temperature (the
’optimal’ case which we made use of in Chapter 5. The aim of Section 7.2 is
then to extend the probabilistic temperature model explored in Chapter 6 onto
the demand domain. Again we will be using the temperature PC climatology
model as the baseline comparison.

The general set-up for model evaluation is similar to the one used in Chapter
5. We will use three year training periods, while keeping the hourly interval
data as before. The difference lies first in the feature inputs used for testing,
and second, in the interval length between test target observations. Because
we are using NWP forecasts with 6-hour intervals, the test observations will
also have 6-hour intervals. The RMSE and skill score results presented will be
roughly on the same order as previous chapters. The pinball loss, however, is
now applied in a different setting than in Chapter 6. It will lie on a different
scale for the demand forecasting problem than for the temperature forecasting
problem.

7.1 NWP-Based Point Forecast of Demand

In this section we build upon the structural demand models described in Section
3.3, and investigated in Chapter 5. We will now, instead of assuming we have
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7.1. NWP-Based Point Forecast of Demand

access to future PC temperature, use NWP forecasts of PC temperature as
inputs in a point forecast of electricity demand. The model we will be utilizing
for this purpose is the best performing GAM-PC model from Chapter 5, namely
GAM-PC1+2:

yt = f(xt) + s(C1
t ) + s(C2

t ) + ϵt, (7.1)

where f(xt) is specified by the interaction model including the interaction terms
for hour:week and weekday:month, and s(·) is a spline function (see Section
5.4). We will look at three versions of this model. The first, ‘optimal’ version,
uses the observed principal components, Cj

t , as inputs. The second version uses
the climatology estimate of PC temperature (6.1). The third version uses as
input the mean over the set Cj,1:M

t|t−k , which is a set of the jth temperature PC
for each NWP ensemble member, at target time t, issued at a specific lead time
k (see Section 3.4 ). We write this as:

C̄j
t|t−k = 1

M

M∑
m=1
Cj,m

t|t−k. (7.2)

Besides the PC temperature inputs, the different model versions are the same.
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Figure 7.1: Mean RMSE over lead time for demand model point forecast
with three types of temperature inputs: NWP, observed temperature, and
climatology.

In Figure 7.1 we see the comparative performance of the GAM-PC1+2
model utilizing three different PC temperature inputs: NWP, observed, and
climatology. For ease of presentation we only show results at 6:00 for each
lead time day. The other hours exhibit only slight differences. The black line
indicating observed temperature shows the optimal performance of our model.
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Skill Score with Reference to:
Temp. Input RMSE Interaction Climatology Input
Interaction 3312.55 − −
Climatology 2930.50 0.217 −
NWP 2712.80 0.329 0.143
Observed 2429.42 0.462 0.313

Table 7.1: Model performance (RMSE and skill score) for GAM-PC1+2 with
three different PC temperature inputs. Skill score with reference to model
version with inputs from the temperature PC climatology model (6.1), and with
reference to the best time covariate interaction model.

If we had perfect knowledge of future temperature this is the results we would
obtain. To be expected, the performance of the NWP-folded demand model
is worse than the optimal case. Importantly, we observe that for the first
5 days performance of the NWP model is roughly at the same level as the
optimal version. Compared to using inputs from the climatology temperature
PC model (6.1), we see a clear improvement during the first 10 days. Thereafter,
the performance for NWP and climatology inputs are roughly the same, with
climatology performing slightly better during lead time days 15:30. Given the
performance of the temperature forecasting model, which showed positive skill
up to 15 days, this is close to what we would expect.

In table 7.1 we summarize the performance of the different versions of the
GAM-PC1+2 model for the first 15 lead time days. The NWP model has
a skill score of 0.143 compared to using climatology inputs. We see that by
employing NWP-folded inputs we can substantially improve upon using inputs
from climatology. We also observe that utilizing the NWP inputs represent a
substantial improvement upon the best model utilizing only time covariates
with a skill score of 0.329.

7.2 Probabilistic Electricity Demand Forecasting

In this section we will extend the probabilistic temperature forecast explored
in Chapter 6 onto the demand forecasting problem. We will first describe
the process we follow for forecasting the 0.9-quantile of demand, before we
provide an example of a predictive distribution that covers the quantile range.
For data-handling reasons we have opted to form the quantile forecast of
demand by first finding the α-quantile of the NWP members through using the
WQE function, and then feeding this estimate once into the structural model.
Alternatively, we could have chosen to input the PC forecast from each NWP
member individually, and then forming the quantile estimate based on the
model output. Because the estimating function is monotonic the two methods
are considered to be equivalent. Our approach is a pragmatic way of forming a
predictive distribution.

In order to forecast the 0.9-quantile of demand we will at each forecast
month first train the same GAM-PC1+2 model as described above. Then, for
each target time, t, we utilize the NWP-WQE quantile estimate, q0.9

t|t−k, of the
first principal component as test input into the GAM-PC1+2 model. As input
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7.2. Probabilistic Electricity Demand Forecasting

Pinball Loss Skill Score
Temp. Input 1:15 1:30 1:15 1:30
Climatology 506.46 515.79 − −
NWP-WQE 462.06 488.95 0.087 0.052

Table 7.2: Model performance (mean pinball loss and skill score) for
GAM-PC1+2 at 0.9-quantile using climatology (6.1) and NWP-WQE (6.3)
temperature PC input. Skill score relative to climatology temperature PC
input.

for the second PC we will, for conceptual simplicity, utilize the mean over NWP
ensemble members, C̄2

t|t−k. The next step consists in sampling M errors from a
normal distribution utilizing the estimated variance of the residuals from the
model output. We then add the error uncertainty to the model function for
each m ∈ {1, ...,M}:

y
(m)
t = f(xt) + s(q0.9

t|t−k) + s(C̄2
t|t−k) + ϵm, (7.3)

where ϵm ∼ N(0, σ2). By taking the sample quantile over this set we can finally
obtain a forecast of the 0.9-quantile of demand:

y0.9
t = W 0.9(y(1)

t , ..., y
(M)
t ). (7.4)

The mean pinball loss at the 0.9-quantile of the GAM-PC-1+2 model with
temperature inputs from climatology and from NWP is shown in Figure 7.2.
For the NWP input we again witness a lead time dependent pattern. The
performance in terms of pinball loss is best in the period immediately following
forecast issuance. It outperforms the temperature PC climatology input for
the first 12 days. Again, this is close to what we would expect given the
performance of the temperature PC forecasting model. In Table 7.2 we compare
the performance of the climatology and NWP inputs in terms of pinball loss
and skill score. We observe that utilizing the NWP-WQE input represents an
improvement on using the climatology input, obtaining a skill score of 0.087 for
the period covering the first 15 days.

To estimate the predictive distribution of demand we follow the same
procedure as described above for 9 quantiles in the range 0.1-0.9. Figure 7.3
displays the predictive distribution of demand for an example month (January
2022). The black line indicates the observed demand, while the red line is the
point forecast based on NWP input. The blue shading shows the predictive
distribution around the point forecast. From the top, the darkest blue shading
marks the area between the 0.8- and the 0.9-quantiles. We observe that the
point forecast for this months tracks the observed demand fairly well. We also
see that the observed values keeps within the predictive range between the
0.1- and the 0.9-quantile for the whole month. By utilizing forecasted PCs
as input in the structural demand model we have transformed a temperature
forecast into a demand forecast. By taking account of the uncertainty in the
temperature (here in the form of the first principal component) we have shown
that we can form a fairly good predictive distribution of electricity demand in
the Nordic region.
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Figure 7.2: Mean pinball loss by lead time (α = 0.9) for demand forecasts with
temperature input in the form of NWP-WQE (6.3) or climatology (6.1).
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CHAPTER 8

Conclusion

In the beginning of this thesis we asked the overarching research question:
How can we forecast future energy demand at the medium-term based on
probabilistic temperature data? We re-framed this question into two problems:
1) How can we build a good structural model for predicting energy demand
by using temperature data? 2) How can we use seasonal NWP forecasts to
give us distribution estimates of future temperature which we can fit into our
demand model? In these concluding remarks we will first summarize the main
findings from each of the result chapters. We will at the very end address how
the results could be strengthened, as well as striking a path for future research.

The main contribution of this thesis has been the introduction a medium-
term forecast model for electricity demand in the Nordic region utilizing NWP
temperature forecast data. This is a year-round model which takes account
of the varying effects of temperature on demand throughout the year. We
developed this model by first (in Chapter 5) building a structural electricity
demand model which relates temperature to demand at any given target time
t. In Chapter 6 we developed a probabilistic temperature model in principal
component space. And lastly, in Chapter 7 we established that by folding
the NWP temperature forecasts into the demand model we can extend the
probabilistic temperature PC forecast into a probabilistic electricity demand
forecast. We will now, in turn, briefly go over each of the results chapters.

In Chapter 5, our overarching goal was to find and present the best GAM-PC
structural demand model and asses its merits. For model evaluation purposes
we used the PCV procedure applied over lead times between 15 and 45 days
from forecast issuance. Most importantly, we found that the best model which
incorporates information from both time covariates and principal components
of the temperature grid was the GAM-PC1+2 model. In addition to including
an involved parametrization of the time covariates, it also included the two
first temperature PCs. Its skill score relative to climatology was 0.59, which
constitutes a large improvement in forecasting ability.

With regard to the isolated contribution of temperature on predictive
performance we assessed the performance of models containing either just
temperature information or just time covariates. We found that a good
parametrization of the time covariates led to a substantial improvement on
climatology, with a skill score of 0.42. In contrast, none of the models containing
just temperature information performed better than the climatology model.
Among the temperature predictors we found that the first PC is a more accurate
predictor than the mean grid temperature. Importantly, we observed that by
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adding the two first PCs to the best parametrization of time covariates we
could substantially improve predictive performance: The skill score of the
GAM-PC1+2 relative to the best model with only time covariates was 0.29.
How these findings compare with results from similar forecast studies is difficult
to ascertain. This is because the contribution of temperature to predictive
performance is often not explicitly stated, or it is made at different resolutions
and time scales (Section 2.1).

Furthermore, we examined the impact of changing the length of the training
data. We noted that model performance was improved by restricting the
training period to 3 years of preceding data. This might suggest that the
relation between demand and temperature have been undergoing a slight shift.
We also demonstrated that the performance of the GAM-PC1+2 model is
strongly month dependent. The improvement in performance is especially high
during the winter months when cold temperatures drive the usage of heating
appliances. We also provided a very straight-forward interpretation of the good
performance of the GAM-PC1+2 model: The model makes us able to say not
only that demand is high because it is January, but that it is exceptionally high
because it is a very cold January. Finally, when comparing the GAM-PC1+2
model with alternative implementations, we found that it performs slightly
worse, but has key advantages when it comes to interpretability and parsimony.

In Chapter 6 our goal was to explore methods that enable us to forecast future
temperature principal components. We focused on probabilistic temperature
forecasts utilizing seasonal NWP model output as a way of estimating
temperature principal component quantiles. We first looked at the performance
of the direct WQE model. We found that this model exhibited considerable
skill up until 15 days from forecast issuance. After 15 days, model performance
was only marginally better than the climatology baseline. Furthermore, we
investigated the performance of models which included weights, lagged forecasts
and time covariates in a QR framework. We found that this additional
information offered only minor predictive improvement. The main takeaways
from this discussion is, first, that we have successfully shown that NWP forecasts
perform well at forecasting temperature also within principal component space.
And second, that the NWP forecasts in PC space require little or no modification
to achieve these results. Like the case was for the demand model we also see
considerable monthly variation in terms of performance for the temperature PC
forecasting task. Forecasting PC temperature during winter months is markedly
harder than for the summer period.

An important contribution of this thesis was the introduction of the re-
weighing scheme for NWP principal components, described in Section 3.5. By
re-weighing temperature forecasts based on recent performance, we can ‘update’
the forecast and obtain short-term improvements in skill at any time point.
We found that the best weighing interval was the 1-day period immediately
preceding forecast re-issuance. The improvement in skill score was found to
last for a period of 5 days. We also built a Gaussian Copula (GC) aggregation
method for making forecast model skill apparent at longer lead times. We showed
that for each increase in the length of the aggregation interval we observed not
only lower pinball loss, but also higher skill scores for our QR-model.

Finally, in Chapter 7, we merged the two approaches from Chapter 5 and
Chapter 6. By folding the probabilistic forecasts of PC temperature as feature
inputs into the demand model, we first contrasted the point forecast utilizing

102



perfect temperature information with one based on NWP inputs. We found that
by utilising the NWP forecast inputs we obtained a skill score with respect to
climatology of 0.143 for the first 15 days after forecast issuance. In addition, the
improvement with respect to the best model without temperature information
was found to be substantial, with a skill score of 0.329. We then extended the
probabilistic temperature PC model onto the demand domain. Focusing on the
0.9-quantile we found that using NWP-WQE inputs led to a skill score of 0.087
during the first 15 days.

Even if this thesis has covered a lot of ground there are several things
we would have liked to improve upon if we had more time. Foremost, we
would have liked to have presented a fuller scope of results relating to the final
probabilistic demand model. What we have demonstrated with regard to the
predictive distribution of demand is more a conceptual outline, than a full
evaluation of performance. A complete treatment would also have contrasted
these results with alternative methods of conceptualizing the uncertainty in the
demand forecast. In addition, we would have liked to observe the performance
of both the re-weighting scheme and the forecast aggregation method applied
in a demand forecast setting. A fuller analysis would also have included a
presentation of the monthly variation in the probabilistic demand forecasting
performance.

Concerning the re-weighting scheme, an obvious path of further development
is to implement a rolling version where the re-weighting is performed as soon
as new temperature information is recorded and available. The upside to such
an implementation would be that we at any given time would have forecast
estimates weighted to prioritize the ensemble members tracking the most recently
observed temperature the best. For this purpose we might consider a Bayesian
approach which keeps track of the weights as new information is recorded. We
would also have liked to look at how much the choice of quantile estimator
effects the predictive performance of the re-weighting.

With regard to the Gaussian Copula forecast aggregation method, we
would have liked to present results accounting for the seed dependence in the
sampling. The GC application could also have benefited from a rolling average
implementation instead of the segmented implementation we utilized. In general,
we also would have liked to establish a firmer testing framework for utilizing
permutation tests.

There is also ample room for further exploration of alternative modelling
strategies. In this thesis we have relied on one main strategy of dimensionality
reduction, through PCA. It might also be worthwhile to investigate the
performance of alternative dimensionality reduction methods such as utilizing
auto-encoders. With regard to the quantile estimation task we have only
scratched the surface of possible modeling frameworks. In order to incorporate
predictors in our quantile estimates we have relied on the Quantile Regression
framework. Options to this approach include Quantile Random Forest and
Quantile Gradient Boosting. As we mentioned in Chapter 3.3 we have chosen
to work with the correlation structure through the incorporation of NWP
forecasts. Model improvements could potentially be gained from investigating
GAM models with ARMA errors to account also for the correlation structure
not related to temperature.

Our modeling approach has been centered around the incorporation of
new data. A natural path of further investigation would be to either look at
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alternative versions of the data we already have, or look for entirely new data
to incorporate into the structural demand model.

A core aspect of our approach has been the temperature grid over the Nordic
region. In this thesis we have taken the dimension and resolution of this grid
to be fixed. An interesting line of investigation would be to look at the effect
of utilizing temperature grids with other dimensions. It is possible that either
expanding or contracting the grid might better reflect the areas where electric
energy is consumed in the Nordic region. It might also be worthwhile to look
into the effect of increasing the resolution of the grid to obtain more granular
temperature estimates. In this thesis we have been working with only one
response variable for demand. Following De Felice et al. (2015) it would also
be interesting to divide the demand data by country and apply the coupled
manifold approach which involves subjecting both the temperature grid and
the demand regions to a coupled PCA transformation.

One of the biggest benefits of the structural demand model is that it allows
for the incorporation of several data sources directly into the model. This
framework could for example incorporate other forecasting data, or information
from weather-related phenomena. One interesting model expansion is to
incorporate information from stratospheric wind-data, especially relating to
Sudden Stratospheric Warming (SSW) events, into our forecasting model. In
winter the stratosphere in the Arctic is characterized by cold rotating air flowing
westwards at high speeds (50-80 km/h). This is the northern hemisphere
stratospheric circumpolar vortex or for short the polar vortex. It is a seasonal
phenomenon as it spins up in late autumn and typically lasts until April when
the winds abide and turn easterly. Roughly every other year the polar vortex
breaks down mid-winter (before its usual downturn). This is associated with a
sudden warming of the stratosphere, which in turn has an effect on tropospheric
temperature (Butler et al. 2017). Mining information relating to the time
span between vortex breakdown and warming might yield predictive gains in
forecasting temperature at longer horizons. This could in turn improve demand
forecast performance especially during the winter months.
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