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Abstract

In this thesis, we conduct a climate risk assessment for tramp shipping pre-fixture

calculations using business analytics. We analyze the effects weather-related events have

on various shipping routes. Data from different sources are used to identify potential risks

and evaluate routing options as mitigation strategies. To predict the fuel consumption

of the routes, we used machine learning, in which the random forest regression proved

to be the best-fitting model. Furthermore, the thesis describes how we used the ray

trace algorithm and the haversine formula to connect the weather data to the routes of

study. The output was then used to generate weather routing distributions for further

analysis of how the weather would affect the decision about which route to choose when

seasonal changes occur. Moreover, we used simulation to calculate the Time Charter

Equivalent (TCE) for different routes and scenarios. Afterward, the TCE formula was

used to calculate the final results. Our findings suggest that shipowners can reduce voyage

costs by choosing routes less affected by extreme weather. Therefore, we recommend

using machine learning models to predict fuel consumption, consider seasonal variations

and their effect on fuel expenditure, and take a stochastic approach to TCE by using

distributions. Hence, shipowners will be able to take a data-driven decision when deciding

on the best route, in order to increase the likelihood of higher profits.

Keywords – Tramp Shipping, Time Charter Equivalent, Weather Routing, Distributions,

Stochastic Approach, Simulation, Machine Learning, Random Forest, Decision-Making
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1 Introduction

The decision to use pre-fixed calculations when acquiring voyage-chartered vessels entails

uncertainty, which makes it difficult for shipowners to ensure guaranteed profit for a

voyage. One of the most significant sources of this uncertainty is the weather, affecting

fuel consumption and, therefore also, the fuel costs (Norlund and Gribkovskaia, 2017).

According to Rehmatulla and Smith (2015), fuel costs can account for up to 70 percent of

a vessel’s voyage cost. Hence, the weather is an essential factor to assess in detail.

When deciding and assessing the best voyage option for a voyage-chartered vessel, the

current industry standard compares alternatives with Time Charter Equivalent (TCE)

calculations (Hayes, 2021). The TCE contains information about revenue and expenses

related to the voyage, divided by the duration of the trip. Thus, TCE constitutes an

effective measure for comparison. However, for practical purposes, the TCE calculation of

uncertain fuel consumption is based on historical information or buffered through rules of

thumb (Ballou et al., 2008). In both cases, the default is to derive a single value based

on a deterministic rule. For instance, it is common among practitioners to assume a 10

to 15 percent weather margin for any TCE calculation (Szelangiewicz and Żelazny, 2016;

Magnussen, 2017).

Despite the rule of thumb being standard practice, it may fall short when the weather

turns out to be worse than expected during the voyage. A competitive advantage may also

be lost when the margin overshoots the calculations on seasonally calm weather periods.

To overcome this issue, in this thesis, we propose a method to generate a distribution

of TCEs and bring a new perspective on how to decide on an efficient voyage based on

different scenarios to reduce risk and optimize profit. We have obtained actual climate

data from 2006 through 2019, which will be the foundation of our method and derived

results. The routes start at the Cape of Good Hope (a geographically suitable rendezvous

area) and, from there, sail to different regions based on where the offer of Supramax

vessels 1 are likely to be.

Our thesis will provide valuable insight in how to reduce risk by deciding which route

1Supramax vessels are a type of cargo ship that are designed to carry dry cargo, such as coal, iron
ore, and grain. They are typically between 50,000 and 60,000 deadweight tons and can navigate through
shallow waters, and smaller ports (Menon, 2021)
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to choose in different scenarios and evaluating TCE based on wind and wave climate

variables. Using a machine learning model, we can connect fuel consumption to weather

data and create a distribution for fuel consumption. Then, by performing a simulation

utilizing the fuel consumption distribution to calculate TCE, we will understand how

voyage costs are affected by seasons and climate.

This thesis proposes three contributions. Firstly, a method to generate distributions

of TCE with climate information as input. A distribution of TCEs will convey more

information than a single TCE value, thus an important tool to assess risk. Secondly,

based on climate seasonality, we compare routes for a Supramax vessel trading to crucial

ports. Finally, we conduct a business-oriented analysis on the case of a vessel open for

cargo at the Cape of Good Hope.

In the next section, we will conduct a literature review of relevant topics related to the

weather margin, fuel consumption, voyage costs, and risks. Afterwards, we will present

the theoretical framework before we describe our methodology for this thesis. In addition,

we will analyze different case studies for three pre-determined routes. The scenarios we

will explore are:

1. high fuel price and the corresponding freight rate,

2. average fuel rate and the corresponding freight rate, and

3. low fuel price and the corresponding freight rate.

Furthermore, we will present our results and findings before we finally come to a conclusion

and list our recommendations.



3

2 Literature Review

2.1 Voyage Risks

The shipping industry is not without exceptions regarding risks for the parties involved.

Variables with uncertain outcomes largely contribute to fluctuations in the net cash flow of

shipowners and charterers (Kavussanos et al., 2021, p. 328). Therefore, although efficiency,

profit-maximizing, and cost-minimizing are crucial within the shipping business, they

must not be at the expense of avoidable risks, such as weather-related fuel consumption.

Although shipping is considered the most fuel- and cost-efficient means of transportation,

there has been an increase in the regulatory pressure for a greener and more sustainable

approach to the maritime industry (Stratiotis, 2018). With volatile fuel prices, it is more

important than ever to minimize voyage costs without increasing risk (Zis et al., 2020). As

the bunker costs can exceed 50 percent of the carrier’s charges when the sailing speed and

the fuel prices are high, significant economic drivers are in place (Alizadeh and Nomikos,

2009; Rehmatulla and Smith, 2015; Ronen, 2011). However, poor weather can elevate

the probability of physical injuries and material damage. Such factors have resulted in

two primary objectives when planning a voyage: minimization of fuel consumption and

the real risk of the journey while considering time-varying sea and weather (Veneti et al.,

2017).

Previous research shows many initiatives in which weather routing has been in focus.

Such voyage optimization considers currents and weather forecasts when planning the

route while mitigating risks. To avoid weather-related hazards and unnecessary delays,

this process, more than ever, integrates voyage planning with safety-, cost-, and emission

management. The literature covers many route optimization methods, but the most

common are isochrone methods, dynamic programming, calculus, pathfinding algorithms,

artificial intelligence, and machine learning (Zis et al., 2020). Several sources claim that

weather routing can make up 2 to 5 percent in fuel savings, highlighting the importance

of weather assessment in a voyage (Armstrong, 2013; Dtn, 2021). Furthermore, because

of economies of scale, a slight reduction in these costs can save millions of dollars (Zis

et al., 2020).
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2.2 Voyage Costs

Voyage costs include fuel, port fees, and canal fees. However, bunker fuel typically accounts

for nearly 75 percent of the total voyage costs, making it the most critical factor to evaluate

when trying to minimize the expenses (Rehmatulla and Smith, 2015). Weather can have

a significant impact on voyage costs, especially fuel costs. Lindstad et al. (2013) have

concluded that varying speed as a function of sea conditions and freight market can save

significant costs connected to voyages. They found that the operation’s economical speed

was considerably lower than the design speed.

2.3 Fuel Consumption

Fuel cost highly depends on weather and the speed of a vessel. The literature states that

fuel consumption will also reduce if a ship reduces its speed. Taskar and Andersen (2020)

investigated the benefit of speed reduction in different weather conditions and simulated

vessels in various weather while operating at different speeds. They found that reducing

the speed to save fuel is effective in calm waters. However, Taskar and Andersen (2020)

states that lower speeds do not result in lower fuel consumption in cases with added

resistance, like weather-related obstacles. Hence, they concluded that fuel consumption in

rough weather on the voyage is independent of speed.

Roh (2013) presents another perspective on fuel consumption and how it is affected by the

weather. He studied different measures to reduce fuel consumption by finding alternative

economical routes for a vessel. In this paper, he derived the minimized fuel consumption

by acquiring sea state information. Furthermore, the results state that shipowners should

consider longer voyages than the shortest route if the weather dictates that it is more

beneficial in the light of cost-minimization. Sea state represents the waves and wind,

and Roh (2013) proves that choosing a slightly longer route is more advantageous if the

weather is worse on the short distance.

2.4 Weather Margin

As the weather significantly impacts the variable costs of a voyage, it is standard practice

to account for this by including a weather margin in the freight rate. Although it has been
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common to use 10 to 15 percent for many years, people have researched the possibility

of more accurate measures. For example, Nilsson and Nilsson (2021) developed, in

their master’s thesis, a machine-learning algorithm using Extra Trees to predict fuel

consumption. They further used this model to find seasonal variations in fuel consumption.

The results also show that the standard deviation for the weather margins was twice as

high during the winter compared to the summer, indicating a higher chance of bad weather.

Seasonal variations with their model showed seasonal variation in fuel consumption of 6.4

percent for the Supramax vessel on their specified case route (Nilsson and Nilsson, 2021).

In Magnussen’s (2017) paper, she used the powering prediction method to investigate

the usage of weather margins. She concludes that it would be misleading to use a pre-

determined percentage as a base on specific routes. For instance, results showed that the

path between Georgetown and Cape Town had a weather margin of 19.81 percent. In

addition, she found that the Powering Prediction Model could be underestimating the

actual margin. This thesis did not include the possibility of extreme weather, which could

impact the final result (Magnussen, 2017).

By investigating the sea margin for container ships and bulk carriers during various

routes, Szelangiewicz and Żelazny (2016) discovered that the service speed is easier to

maintain for container ships when accounting for the weather. Therefore, they calculated

the sea margin assuming the expected service speed remained the same for each route.

The method depended on vessel type, size, and statistical weather parameters. This

method estimated a sea margin of approximately 27.5 percent and 33.8 percent, which is

considerably higher than the rule of thumb (Szelangiewicz and Żelazny, 2016).
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3 Theory

3.1 Time Charter Equivalent

When using dry cargo vessels, it is standard to use fixed contracts known as charter

parties, where two of the most common are the voyage charter and the time charter. A

time charter party is a contract where the shipowner lends the ship to a charterer for

a period of time. The shipowner gets paid regularly from this agreement, whereas the

charterer generates its revenue through freight (Plomaritou and Papadopoulos, 2017, pp.

1-4). However, the operating costs are split between the charterer, who pays for voyage

expenses, and the shipowner, who is responsible for the operational costs (Panayides,

2018, pp. 65-66). A voyage charter party states that the shipowner is responsible for all

operating and voyage expenses. Negotiating these contracts happens when the vessel is

used for one journey from one port to another (Panayides, 2018, p. 66). In our study,

we focus on the latter, as a risk assessment for pre-fixture calculations is more relevant

in the case of the shipowner’s engagement in a voyage charter. The risk of the fuel

consumption uncertainty derives into a fuel consumption risk and will nonetheless amount

to an essential factor for the owner’s cost.

When comparing charter contracts for time charters and voyage charters, it would be

possible to calculate the daily hire a vessel will obtain on a voyage trip using the Time

Charter Equivalent (Panayides, 2018, p. 204). The TCE formula is, as shown in Equation

3.1, the voyage revenues minus voyage expenses divided by the total voyage duration in

days. The voyage expenses are variable and consist of costs related to the canal, bunker,

and ports (Hayes, 2021).

TCE =
V oyage Revenues− V oyage Costs

Roundtrip V oyage Duration in Days
(3.1)

As stated in Principles of Chartering (Panayides, 2018), the voyage costs are variable, and

the bunker costs amount to a significant part of these. The total bunker costs depend on

the ship’s engine consumption, speed, travel distance, and encountered deviations. When

calculating the time to get from one port to another, the weather should be taken into

account since facing bad weather can reduce speed and change routes (pp. 209-210).
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3.2 Simulation in the Shipping Industry

Within the shipping industry, simulation is used to improve strategies and find optimal

voyage routes. In addition, it is an efficient tool for making decisions and assessing risk.

Furthermore, because simulation enables analysts to compress time and space, problems

can easily be solved while still being dynamic (Marklund and Laguna, 2018, pp. 257-259).

A simulation is a tool commonly used by shipping managers to optimize profit. Performing

a simulation can result in improved strategy and can for instance, be used to assess

how different revenue management methods are performed in different scenarios within

shipping (Zurheide and Fischer, 2014). Seeing as the weather is difficult to predict, it is

common to use simulations for a stochastic approach. For instance, it can be performed a

stochastic discrete simulation to find the safest route for a voyage based on data of wave

height (Kosmas and Vlachos, 2012).

A stochastic approach simulates processes accommodating for randomness (Marklund and

Laguna, 2018, p. 202). A process has elements of randomness when the input variables

contain uncertainties, and performing a simulation could contribute to a more accurate

result. Because of this, a stochastic approach repeats this process multiple times, taking

into consideration the uncertain input data, generating multiple output values (Marklund

and Laguna, 2018, p. 262). In other words, probability distributions are used to generate

a new output for each repetition of the process (Softwaresim, 2022).

The probability distributions of the uncertain input variables are often unknown.

Simulating the process with an incorrect distribution will lead to a misleading result, even

though the system has a correct input. By retrieving samples from the actual data, an

empirical distribution may be the best fit according to Barton and Schruben (2001). On

the other hand, empirical distributions cannot generate variates outside the observed data

(Shanker and Kelton, 1991).

3.3 Random Forest

The preferred machine learning model for our thesis is the Random Forest Algorithm, as

it is easy to implement and provides high accuracy. Furthermore, it efficiently deals with

many input variables without overfitting the model (Biau, 2010). The Random Forest
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Regression Model is an ensemble model based on the fundamentals of decision trees.

According to Cutler et al. (2012), Random Forest is based on a top-down approach

known as binary recursive partitioning. The trees partition the predictor space by using

a sequence of binary splits on variables. The terminal nodes, the ones that do not split,

constitute the entire predictor space. Furthermore, each node that is not terminal splits

into two descendent nodes, one going to the left and the other to the right, based on the

values of one of the independent variables in the model. Where the predictor variable is

continuous, the partition is determined by a split point (pp. 159-161). This concept is

illustrated in Figure 3.1.

Figure 3.1: Binary recursive partitioning

Furthermore, Cutler et al. (2012) states that a categorical predictor variable xi retrieves

values from a limited set of categories Si = si,1, . . . , si,m, where each split directs a subset

to the left and the remaining categories to the right. The specific split used is determined

by some criterion; usually, the mean squared residual at the node for regression problems

(pp. 159-161).

Q =
1

n

n∑
i=1

(yi − ȳ)2 (3.2)

Where ȳ = 1
n

∑n
i=1(yi − ȳ)2 is the predicted value at the node. Hence, the criterion
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measures the "goodness of fit" for which large values imply a poor fit. (Cutler et al., 2012,

p. 160).

The approach for deciding the best split for continuous predictor variables entails sorting

the values of the predictor and evaluating splits between every unique pair of sequential

values. It is typical to use the interval’s midpoint, but other interval values might be

sufficient for the cause. (Cutler et al., 2012, 158-161).

The partitioning continuously recurses until the stopping criterion is met, and this is

common when the unsplit nodes contain fewer than a fixed number of cases. Consequently,

this results in terminal nodes, and the predicted value can be retrieved from all the

terminal nodes by averaging the response in the case of regression problems (Cutler et al.,

2012, pp. 159-161).

Figure 3.2: Algorithm for Binary Recursive Partitioning (Cutler et al., 2012, p. 161)

As previously mentioned by Cutler et al. (2012), Random Forest uses trees hj(X,Θj) as

base learners. For training data D = (x1, y1), . . . , (xN , yN), where xi = (xi,1, . . . , xi,p)
T

denotes the p predictors and yi denotes the response, then the fitted tree is denoted

ĥj(x, θj, D). The formula above was the original formulation of Breiman’s definition.
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However, Random Forest does have a component θj that implicitly adds randomness

(Cutler et al., 2012, 163-164). As the model only uses a random selection of m predictors

for all the splits in a tree, the machine learning model decorrelates the tree. As a result,

the variance is reduced, which also increases the model’s accuracy (James et al., 2021, p.

343).

Figure 3.3: Algorithm for the Random Forest Regression Model (Cutler et al., 2012, p.
164)

3.4 Weather and Seasonality

In the North Atlantic Ocean, winter ranges from December until the end of February,

whereas the summer starts in June and lasts until the end of August (Semedo et al., 2008).

As a result, the higher latitudes are subject to multiple extratropical storms during winter.
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In addition, the North Atlantic Ocean also has an official hurricane season, spanning from

June 1 until November 30 (Kossin, 2008).

According to Elsner et al. (1999, p. 67), tropical cyclones will develop near the equator,

between 20 degrees north and south latitude, when the ocean is warmest. If the wind speed

is below 33 knots, it is called a tropical depression, and a wind speed reaching between

35 and 62 knots is called a tropical storm. Above this value, the storm is considered

a hurricane or a severe tropical cyclone which the event is called in the Indian Ocean

(Emanuel, 2003). The North Atlantic Ocean has multiple occurrences of tropical cyclones,

with many reaching the speed criteria of a hurricane (Elsner et al., 1999, pp. 67-69).

Since the South Atlantic Ocean is in the southern hemisphere, the seasons are different

compared to the North Atlantic Ocean, where summer is from December to February

and winter is from June to August. Spring is from September to November, whereas fall

ranges from March to May (Ramos et al., 2021). Subtropical cyclones can occur in the

South Atlantic Ocean, most of which take place during summer, while fall has the most

intense storms (Gozzo et al., 2014).

Figure 3.4 is a map displaying the storm tracks of extratropical storms. Furthermore, it

indicates that the storms are centered in the high latitudes and are more intensive during

the winter because of the high-temperature variance (Bengtsson et al., 2009). In Figure

3.4, the storm tracks are close to the poles and are a consequence of the cold air from the

poles mixing with the warmer air moving toward the poles. Therefore, these winds have

a temperature difference and can develop a front when they meet. This front would be

stronger during the winter because there would be an even more significant temperature

difference (Bengtsson et al., 2009; Catto et al., 2012).
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Figure 3.4: Map over extratropical storms occured at sea (Bengtsson et al., 2009)

In the Indian Ocean, the winter season lasts from December until the end of February

(Latif et al., 1999). The monsoon season is from June till the end of September, and the

post-monsoon season is present in October and November (Krishna, 2009).

Ranking the world oceans by the number of storms, the Indian Ocean appears to be

second, slightly behind the Pacific Ocean (Zehnder, 2022). The area is seasonally affected

by tropical cyclones and monsoons, both the southwest and the northeast monsoon, due

to the extreme seasonal changes in temperature over Asia (Phillips et al., 2021; Emanuel,

2003). The southwest monsoon occurs during the boreal summer months, while the

northeast monsoon develops during winter (Phillips et al., 2021). Therefore, two criteria

must be met for a monsoon to exist. Firstly, it is a requirement that the summers are wet,

whereas the winters are dry in the northern hemisphere. The other criterion is reversing

the direction of the prevailing winds (Roux, 2022).

3.5 Ray Tracing

Ray tracing is our preferred method for merging the shipping routes and the relevant

weather information. While creating high-realism photos, the algorithm requires much

computational power. Research has, as a result, proposed ways of speeding up the process

by using additional acceleration data structures such as grids, bounding volume hierarchies,
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and KD-trees (Cosenza, 2008).

The new traversal algorithm is fast, straightforward, and extensively used to traverse a

ray between a start and an endpoint (Amanatides and Woo, 1987). However, to correctly

calculate the traversed grid, one must account for all the grids passed by the ray. Another

traversing method is the Bresenham 2D line rastering algorithm, which only includes some

grids, as seen in Figure 3.5 (Cosenza, 2008).

Figure 3.5: Bresenham 2D Line Rastering Algorithm vs. the New Traversal Algorithm
(Cosenza, 2008)

The first step when using grids in the ray tracing method is to divide the surface, for

instance, the ocean, into uniform voxel spaces (Cosenza, 2008). The next phase uses

the new traversal algorithm to find two input variables, X and Y , representing the ray

origin grid. Furthermore, stepX and stepY take on the values 1 or -1, based on the

decrementation or incrementation of X and Y as they pass the grid barriers (Amanatides

and Woo, 1987).

In addition, we must perform some calculations to find the distance a ray uses on each

grid. Here, a variable t represents the ray crossing the first vertical grid barrier, and we

store the value in tMaxX. Likewise, the value of the first crossing of a horizontal grid

barrier is tMaxY (Amanatides and Woo, 1987). The result from the ray trace is the

return of all voxels traversed by the ray.

f(t) = −→o + t ·
−→
d (3.3)

Equation 3.3 from Cosenza (2008) is the parametric representation of a ray where the

variable −→o represents the ray’s origin and
−→
d where the ray is heading. Because the ray

traverse voxels along the way, an interval is made as an association with the ray. Regarding
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the output, it only considers intersections within this interval [tmin, tmax) usually [0,+∞)

(Cosenza, 2008).
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4 Methodology

4.1 Data Acquisition

4.1.1 Weather Data

Vessels can face hazardous extreme weather conditions at sea, in which strong winds

and phenomenal waves are particularly relevant (Sienkiewicz et al., 2020). However,

such events are difficult to forecast due to significant fluctuations and seasonal variations

(Szelangiewicz and Żelazny, 2016). Therefore, our thesis focuses on weather risk and how

this affects fuel consumption and TCE, in which we chose wind and waves as our weather

variables.

We retrieved relevant data on waves, swell2, and wind from the Copernicus Marine

Service (2022). The gathered information included data from coordinates across the

oceans at different time intervals. We used the collected material to understand how fuel

consumption is affected by the seasonal climate relevant to each chosen route.

Wind data is registered every six hours in grids of 0, 25o x 0, 25o, while wave data is

documented every three hours in grids of 0, 2o x 0, 2o (Copernicus Marine Service, 2019,

2021). The datasets from Copernicus have three dimensions: time, longitude, and latitude.

Furthermore, it includes observations for each grid in the respective time intervals. To

better understand how wind and waves affect fuel consumption and TCE, we used eastward

and northward wind, wave height, wave direction, swell height, and swell direction as

input variables.

4.1.2 Case Study Routes

In addition to weather data, we generated the shortest path for three routes using an

Application Programming Interface kindly provided by Dataloy. For the case study, we

assume a shipowner has to choose one voyage to assign a vessel located in the Cape of

Good Hope. The shipowner can choose whether to lift cargo from Houston in the USA to

2Swells are usually longer waves that travel across the ocean surface, and they are not created by
local winds. Hence, the generated wind waves are transitioned into swells when they do not propagate
more energy (Zhang and Li, 2017).
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Rotterdam in the Netherlands, Samarinda in Indonesia to Pipavav in India, or Richards

Bay in South Africa, to Mundra in India.

Our motivation for the selected routes is supported by 1) them being common routes for

the Supramax vessel for coal and petroleum coke transport and 2) the voyages covering

different geographical areas. More importantly, as Figure 4.1 shows, the vessel must sail

through areas where we would expect seasonal climate events.

Figure 4.1: The shortest route from Cape of Good Hope to 1) Houston to Rotterdam;
2) Samarinda to Pipavav; 3) Richards Bay to Mundra
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4.2 Machine Learning

To connect the weather data to fuel consumption, we used machine learning. To find the

best-fitting model, we based our findings on a sample derived from noon data provided by

Western Bulk and weather data we collected from the Copernicus Marine Service (2022).

The noon data contains information about two different designs of Supramax vessels;

Dolphin 64 and Dolphin 38 Green.

In this process, we used Python with its machine learning library Scikit-Learn. We

followed standard machine learning procedures, including data pre-processing, training of

the data, and an evaluation of the model.

Figure 4.2: Machine learning workflow

In the pre-processing phase, we made binary values for two categorical features; "Design"

and "load." However, since we are working with a regression model, we cannot have any

categorical values, as the model will not interpret them. Therefore, we decided to make

the reference value 1 and the alternative 0. Thus, the ship design Dophin 64 was replaced

with 1, and the more fuel-efficient model, Dolphin 38 Green, was substituted with 0. In

the case of the "load" feature, 1 represents laden, whereas 0 stands for ballast.

Considering the weather data from Copernicus Marine Service (2019, 2021) is observed
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every 3 and 6 hours, and the noon reports register the vessel’s location every 24 hours, we

had to find vessel coordinates between the reported locations. We used the Application

Programming Interface provided by Dataloy (2022) to interpolate the noon reports. Using

this interface, we found the shortest distance between the noon report locations to generate

waypoints. Generating waypoint coordinates between the noon report locations made it

possible to find the weather data affecting the vessels’ fuel consumption.

Furthermore, we had to decide what to do with the missing values. In our case, we

chose to impute them to have sufficient data. Again, since most of the data missing were

apparent wind direction and apparent wind speed for dates after 2019, we were afraid

that if we removed all the rows, other vital information would get lost. There are several

imputing methods like mean, median, or mode, but we chose to use the KNN method

as it looks for characteristics and takes the average of the five closest neighbors. The

reason for using the KNN method is that it better preserves the variability and value

(Troyanskaya et al., 2001). Moreover, we had to round the number to the closest integer

for categorical features ranging from 1-8, as these should not take on decimal values.

Before training our model, we also had to deal with the categorical features. As these

variables range from 1-8, the values are treated as ordinal, meaning they have a specific

order. Hence, the higher the value, the more it is weighted. However, this is irrelevant to

our case, as each number has the same gap interval. To handle this issue, we used one-hot

encoding, which means that each value is transformed into a feature with binary values

stating whether the observation is true or false.

At the end of the pre-processing phase, we had to deal with outliers. When we explored

the dataset, we found significant outliers, which can give a wrongful picture of the data.

The deviations will also affect the model’s performance. There are several methods to

deal with them, but we chose to use the interquartile method, in which we removed all

the outliers that were more than three standard deviations from the mean, see Figure

4.3. This makes the machine learning model more robust and accurate (Singh and Haider,

2022).
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Figure 4.3: Boxplot of continuous variables, showing the removed outliers

When all the steps in the pre-processing phase were completed, we could start the model

training. Firstly, the dataset was split into a training and a test set. We used the split

ratio of 80 percent as the training set and 20 percent as the test set. There are many

common splits in the literature, but we used the 80/20 split as we wanted an extensive

training set but tried to avoid overfitting. This split is also said to give the best validity

(Gholamy et al., 2018). We then used random generator 42 to be able to replicate the

model later on, if necessary, as well as to avoid seasonal patterns.

To conclude on the winning model, we tested several supervised machine learning models

to benchmark the performance. These models included Linear Regression, Decision Tree,

Random Forest, Support Vector Regression, Lasso Regression, Ridge Regression, Gradient

Boosting, and Gaussian Process Regression. Based on what model we trained, we used

either the original training data or a scaled one. Linear- and distance-based models

depend on scaled data to avoid misrepresented results (Pulagam, 2020). These models

included Linear Regression, Lasso Regression, Ridge Regression, KNN, and Support Vector
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Regression.

In the evaluation of the model, we used several metrics such as Mean Squared Error

(MSE), Mean Root Squared Error (MRSE), Mean Absolute Percentage Error (MAPE),

Mean Absolute Error (MAE), and the coefficient of determination (R2). The choice of

performance measures is based on Nilsson and Nilsson’s (2021) paper, as we wanted to

compare our results.

4.3 Generating Weather Routing Distributions

The generated shortest path for the three case routes provides realistic voyages. In addition,

the resulting dataset gives us multiple coordinates, the latitude, and the longitudes a

vessel has to pass through on each course.

We are using the Ray Tracing Algorithm to connect weather data to the routes of study,

see Figure 4.4. The algorithm extracts the grids that cross paths with the routes to collect

weather information directly impacting the voyage. We use the grids from the weather

dataset to generate the weather routing distributions and analyze how it will affect the

decision of which route to choose when seasonal changes occur.

Figure 4.4: Ray tracing on a route to display the concept
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Connecting weather to the routes has to be completed twice, one for each weather variable

due to different time intervals. For waves, we can make waypoints for the voyage every 3

hours and obtain weather information related to the corresponding coordinates, whereas,

for wind, a waypoint can first be created after 6 hours.

Connecting the weather variables to both legs, (rendezvous to the loading port, then

to discharging port), the first step is to perform an interpolation between the routing

points for each of the three routes. This method provides a set of waypoints which

are the coordinates of where the vessel will end up every 3 hours. The interpolation is

accomplished using a fixed speed over ground of 12.5 knots and the Haversine Function to

find the vessel’s location at the three-hour mark.

In our thesis, we used the Haversine method to calculate the distance between two positions.

This formula is an integral equation within the navigation field, as it is possible to find the

arc distance between two points on a sphere based on longitude and latitude parameters.

The concept of Haversine dates back to 1805 under the table entitled "logarithmic versed

sines" (Brummelen, 2021, p.268). Furthermore, the Haversine equation searches for a

triangle’s side and angle relationship in a spherical plane, also known as the Law of

Haversine (Ikasari et al., 2021).

Figure 4.5: The Spherical Triangle (Hartanto et al., 2017)

The Haversine formula aims to describe all equations related to the Earth by eliminating

the factors that cause the slightly elliptical form (Ikasari et al., 2021). In the sphere, the

triangular shape on the surface connects the points u, v, and w, as seen in Figure 4.5.
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The algorithm establishes a direct distance between the points, creating a, b, and c. The

Haversine formula is presented as follows (Korn and Korn, 2000, pp. 892-893):

hav(
d

r
) = hav(θ2 − θ1) + cos(θ1) · cos(θ2) · hav(λ2 − λ1) (4.1)

In Equation 4.1, d represents the distance between the two points, r is the radius of the

sphere, θ1 and θ2 is the latitude of points 1 and 2 in radians, and λ1 and λ2 stands for the

longitude of points 1 and 2 in radians, respectively.

Furthermore, the left side of the equation, d
r
, is the central angle. Therefore, to solve for

the variable, d, we will have to apply the inverse Haversine, or use the arcsine, shown in

Formula 4.2 (Gade, 2010).

d = 2rarcsin

√
sin2(

θ2 − θ1
2

) + cos(θ1) · cos(θ2) · sin2(
λ2 − λ1

2
) (4.2)

From our routes and weather data interaction, we derive variables for apparent swell, wind,

and wave direction. The explicit directions of these parameters, presented in Figure 4.6,

are related to the vessels heading from waypoint t to waypoint t+ 1. Here, we assigned

values from 1 to 8 depending on which direction the weather encounters the ship. Nilsson

and Nilsson (2021) states in their paper that "speed over ground" is the most influential

predictor for fuel consumption. Given this information, we have included this variable in

our analysis.
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Figure 4.6: Apparent wind, wave, or swell direction based on the vessel’s heading

Originally the retrieved data from Copernicus Marine Service (2019) listed wind in the form

of northward wind and westward wind in meters per second. Equation 4.3 and Equation

4.4 below show how the northward (v) and the westward (u) wind are calculated. In

continuance with the calculations of fuel consumption, these variables must be transformed

into wind speed in knots. The conversion is estimated with Equation 4.5, multiplied by

1.94384449, representing the value of one meter per second in knots (Johansson and Bolin,

2019). Finally, Equation 4.6 represents the calculation of wind direction.

u = Vs · sin(Vd ·
π

180
) (4.3)

v = −Vs · cos(Vd ·
π

180
) (4.4)

Vs =
√
u2 + v2 (4.5)

Vd = mod((270.0− arctan(v, u) · π

180
),

π

180
) (4.6)

Since both interpolated files have the same route information, equal starting dates, and
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time values, it is possible to merge them. This resulted in a dataset displaying all waypoints

for the three routes, with voyages starting every day from 2006 to the end of 2019.

Next, we imputed the missing numbers for wind speed and apparent wind direction by

using the average value and mode. Thereafter, the missing numbers were calculated

based on the monthly weather for each separate route. Furthermore, we had to make

adjustments corresponding to the dataset from the machine learning model to predict fuel

consumption. Thus, we added values for the "load" variable, representing a ballast vessel

for the first leg and a loaded vessel for the second leg to the discharging port.

The routes will encounter different seasons depending on geographical location. To avoid

confusion, we will refer to December, January, and February (DJF) as one period, March,

April, and May (MAM) as the second, June, July, and August (JJA) as the third, and

September, October, and November (SON) as the fourth. Since a voyage starts every day

for 14 years, many will cross pre-defined periods. Therefore, we sorted the trips based on

which period the voyage spent the majority of the days in.

Figure 4.7: Routes, periods, and scenarios

Furthermore, we had to make adjustments corresponding to the dataset from the machine

learning model to predict fuel consumption. First, we removed unnecessary columns and

adapted the dataset to only one observation per day for each voyage, as the training

set was based on noon reports. Furthermore, we used the ship design Dolphin 64 for all

observations and a fixed speed over ground of 12.5 knots. Afterward, we removed the

outliers and added dummy variables identical to the training set. Joblib3 was then used

to predict fuel consumption based on our input variables. Moreover, we found the total

fuel consumption for each voyage, creating distributions for each of the routes for each

period, which was further used for the TCE calculations.
3Joblib is a Python library that stores the data for later use and ensures reproducibility (Joblib,

2021).
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4.4 Estimating TCE Distributions

Next, we simulated fuel consumption as a part of the TCE calculation. This is because

simulation is a rational risk analysis and decision-making tool (Marklund and Laguna,

2018, pp. 257-259). Considering the case study, we calculated the TCE for each scenario

for the respective routes and periods. The purpose was to get one TCE simulation for

each scenario, resulting in different distributions.

The simulation calculates TCE using the uncertain input variable, fuel consumption, as

well as the fixed inputs trip duration, port costs, bunker fuel prices, and freight rate.

Then, the simulation will repeat the process of calculating the TCE, generating a final

distribution. As shown in Table 4.1, the freight rate and other costs vary based on the

three scenarios; low bunker price, mean bunker price, and high bunker price. See Table

A.1 and Table A.2 in the Appendix for information about the routes and port costs.

We ran simulations on all the routes, resulting in a Time Charter Equivalent distribution

for each period and scenario. We used the TCE formula from Equation 3.1 in Section 3.

For example, the route from Cape of Good Hope to Samarinda to Pipavav in the high

bunker price scenario will be calculated with the following formula:

TCE =
11.40$
tonne

· 50, 000 tons− (549.21$
tonne

· FC)− (13, 309$ + 56, 289$)

31.28 days+ 4 days at port
(4.7)

Table 4.1: Bunker price and freight rate based on scenarios

Number listed
in $/tons 4

Cape of Good Hope
Houston - Rotterdam

Cape of Good Hope
Samarinda - Pipavav

Cape of Good Hope
Richards Bay - Mundra

Bunker price Freight rate Bunker price Freight rate Bunker price Freight rate

Low bunker scenario HSFO: 379.33
ULSFO: 457.85 18.00 HSFO: 379.33 9.00 HSFO: 379.33 12

Mean bunker scenario HSFO: 479.00
ULSFO: 571.00 13.25 HSFO: 479.00 9.20 HSFO: 479.00 15

High bunker scenario HSFO: 549.21
ULSFO: 636.18 21.25 HSFO: 549.21 11.40 HSFO: 549.21 15.25

4Low bunker scenario numbers are from 2019-01-02, mean bunker scenario is from 2019-07-12, and
high bunker scenario from 2018-10-24 (Clarksons Shipping Intelligence Network, 2022).
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5 Assumptions

This thesis is based on several assumptions that are important to consider when interpreting

the results. These assumptions include days at ports, fixed input variables, and the

perspective of cost-minimizing.

The assumption of days at port refers to how the vessel spends two days at each port on

the different routes. In total, this adds four days to each of the routes, in which two days

go to the loading ports and two days are spent at the discharging ports. Accordingly, the

productivity at each of the ports also remains the same. Although four days in the real

world are realistic, it might deviate slightly, resulting in a marginally inaccurate number

of days on a voyage for the TCE calculations.

Furthermore, we assume that some of our input variables are fixed in order to simplify the

analysis and focus on the effects of the other variables, which are more of interest in this

thesis. When predicting fuel consumption, we are studying a particular vessel, Dolphin

64, and we keep the speed over ground constant as we are more interested in how the

weather variables affect the total consumption.

Lastly, the thesis is based on the assumption that the optimal route is solely based on an

evaluation from a cost perspective where the best decision always will be the route with

the least costs rather than considering other factors. Hence, the analysis does not take

into account that some of the routes might increase the risk to the people onboard the

vessel, the vessel itself, or environmental impacts such as the marine fauna.

It is important to keep the assumptions above in mind when interpreting the results of

this thesis and consider potential limitations or biases that could be a result of these

premises.
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6 Results

6.1 Descriptive Statistics

6.1.1 The North Atlantic Ocean

To better understand the climate data, we created maps displaying the wave height and

wind speed in the different areas of study. The height and speed are color-coded, in which

dark blue represents calm weather, whereas yellow indicates high activity. These values

are averaged across time. For example, if we look at the North Atlantic Ocean, there

are seasonal wave height and wind speed patterns. The area around the Caribbean is

reasonably still regardless of season, but the regions further north, are more prone to

weather events related to the periods.

Figure 6.1: Mean wave height in the North Atlantic Ocean

The winter in the North Atlantic Ocean constitutes the months of December, January,

and February. These months are more affected by extreme weather events than other

seasons. Further, this is in line with the findings of area-specific weather during the winter,
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where many extratropical storms occur on the East Coast of North America (Bengtsson

et al., 2009). The area is susceptible to these storms due to the westerlies that create a

high-pressure belt. These phenomena can be seen in Figure 6.1 and Figure 6.2.

Figure 6.2: Mean wind speed in knots in the North Atlantic Ocean

If we look at Table 6.1, we see that the wave height has an average of 2.76 meters during

DJF, which is considerably more than the months of JJA. These months equate to summer

in the North Atlantic. Furthermore, this aligns with our wind speed findings in Table

6.2. The standard deviations are consistent with what to expect and do not deviate

significantly from the means. Moreover, it presents a peak of 127.96 knots in the winter,

but JJA closely follows it with a maximum of 126.22 knots. This indicates that although

DJF usually is more exposed to severe weather, the summer might have more volatile

weather events. Even though the weather seems reasonably reliable, which can be seen

through the 95 percent quantile, there are some extreme weather-related incidents.
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Table 6.1: Summary statistics of the North Atlantic Ocean - Wave height

Period Mean Standard Deviation Max Min 95% Quantile

DJF 2.76 1.56 17.78 0.00 5.84

MAM 2.15 1.58 14.91 0.00 4.40

JJA 1.54 0.69 14.32 0.00 2.69

SON 2.10 1.20 15.25 0.00 4.44

Table 6.2: Summary statistics of the North Atlantic Ocean - Wind speed

Period Mean Standard Deviation Max Min 95% Quantile

DJF 16.28 7.56 127.96 0.00 30.11

MAM 14.03 6.57 110.14 0.00 27.99

JJA 11.50 5.25 126.22 0.00 20.06

SON 13.50 6.73 116.01 0.00 25.75

6.1.2 The South Atlantic Ocean

The westerlies also affect the South Atlantic Ocean, as this zone is located on both

hemispheres (Lee et al., 2019). Due to this phenomenon, the ocean will experience

high-pressure fronts making it prone to extratropical storms during the winter months:

June, July, and August (JJA). This can be observed from the higher waves and more

wind activity in the southern parts. However, the areas near the equator are very tranquil

during all seasons. Compared to the North Atlantic, DJF is the calmest month in the

South Atlantic Ocean, as we can see from Figure 6.3 and Figure 6.4.
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Figure 6.3: Mean wave height in the South Atlantic Ocean

Figure 6.4: Mean wind speed in knots in the South Atlantic Ocean
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Table 6.3 and Table 6.4 indicate a few seasonal wind speed and wave height variations by

looking at the mean values. The standard deviations, on the other hand, are relatively

high for all the periods in wave height, and they are fairly similar for wind speed. The

summary statistics show that SON has the highest wave observation of 15.36 meters and

a maximum wind speed of 116.29 knots. This implies that the South Atlantic Ocean is

occasionally subject to extreme weather events in normally quiet months.

Table 6.3: Summary statistics of the South Atlantic Ocean - Wave height

Period Mean Standard Deviation Max Min 95% Quantile

DJF 2.31 1.07 13.72 0.00 4.41

MAM 2.63 1.22 14.83 0.00 5.63

JJA 2.90 1.36 14.61 0.00 5.58

SON 2.58 1.18 15.36 0.00 4.93

Table 6.4: Summary statistics of the South Atlantic Ocean - Wind speed

Period Mean Standard Deviation Max Min 95% Quantile

DJF 13.82 6.23 94.07 0.00 25.22

MAM 14.79 6.86 123.98 0.00 27.36

JJA 16.23 7.32 96.73 0.00 29.64

SON 15.21 6.68 116.29 0.00 27.40

6.1.3 The Indian Ocean

As seen in Figure 6.5 and Figure 6.6, the Indian Ocean has a different pattern as they

do not operate with the same seasons as the Atlantic Ocean. We see that the weather

activity is relatively low in the winter months, DJF, and the summer, which equates to

MAM. However, during the monsoon season, JJA, there are generally high waves and

more substantial wind speeds due to the westerlies and the monsoons. This weather also

affects SON as September is commonly defined as a part of the monsoon season.
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Figure 6.5: Mean wave height in the Indian Ocean

Figure 6.6: Mean wind speed in knots in the Indian Ocean
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Regarding the standard deviation, Table 6.5 shows that it is not increasing proportionally.

However, the disproportionality between the wave height and the associated standard

deviation indicates that the monsoon season is generally prone to higher waves on average.

In addition, Table 6.6 shows that the mean wind speed is substantially stronger during

the monsoon season, which averages 14.17 knots. However, MAM is more susceptible to

fluctuations as the maximum wave height is approximately 16 meters, which is remarkably

higher than the maximum in the other periods.

Table 6.5: Summary statistics of the Indian Ocean - Wave height

Period Mean Standard Deviation Max Min 95% Quantile

DJF 1.83 0.88 13.74 0.00 3.37

MAM 1.98 1.09 16.01 0.00 3.86

JJA 2.62 1.21 13.52 0.00 4.72

SON 2.12 1.09 13.42 0.00 4.05

Table 6.6: Summary statistics of the Indian Ocean - Wind speed

Period Mean Standard Deviation Max Min 95% Quantile

DJF 11.60 5.51 109.30 0.00 20.93

MAM 11.18 5.98 117.38 0.00 21.53

JJA 14.17 6.29 122.55 0.00 24.42

SON 11.84 5.85 114.43 0.00 21.53

6.1.4 Route 1: Cape of Good Hope - Houston - Rotterdam

Figure 6.7 shows the wind speed and direction found on the routes for each corresponding

period. The wind speed is grouped into 13 categories based on the Beaufort Scale, where

0 indicates calm wind, whereas 12 implies a hurricane as the wind surpasses 65 knots

(Perlewitz, 1936).
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Figure 6.7: Wind speed and direction for Route 1, Beaufort Scale

By using this scale, we can see that the wind mainly came from the east in December,

January, and February. The wind speed was categorized as 4 and 5, which equates to

the range between 14 and 17 knots. However, we see instances where the wind speed is

defined as a tropical depression (Perlewitz, 1936; Emanuel, 2003). For MAM, there are

fewer events that can be identified as tropical depressions, as we see calmer winds. For

the months of JJA, the wind rose plots indicate even calmer winds. Furthermore, the

period SON seems to be more susceptible to higher wind speeds compared to JJA, which

could indicate a hurricane season.



6.1 Descriptive Statistics 35

6.1.5 Route 2: Cape of Good Hope - Samarinda - Pipavav

For DJF in route 2, Figure 6.8 show that the winds are quite calm most of the time.

However, there are some instances where the wind speed reaches category 6 to 8 on the

Beaufort Scale, which means that there is a tropical depression (Perlewitz, 1936; Emanuel,

2003). The wind speed is greatly reduced for the period MAM, although there are some

occurrences of tropical depressions. Furthermore, we see the winds coming from the

southeast and east. In the period JJA, which is the monsoon season, there is a higher

quantity of wind in the Beaufort Scale category 6 to 8. We see that the intensity has

increased, even though severe tropical storms rarely occur. During SON there are also

some instances of higher wind speed, but the average winds seems to be relatively calm.

Figure 6.8: Wind speed and direction for Route 2, Beaufort Scale
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6.1.6 Route 3: Cape of Good Hope - Richards Bay - Mundra

The period DJF for route 3 in Figure 6.9 has very few cases of wind speed reaching the

same capacity as the two other routes. The wind speed for the route to Mundra is mostly

between 4 and 6. JJA is the period with the highest number of observations reaching

tropical depressions between categories 6 and 8. The rose plot shows that SON is facing

calmer winds, although stronger winds occur.

Figure 6.9: Wind speed and direction for Route 3, Beaufort Scale
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6.2 Machine Learning

6.2.1 Model Selection and Prediction Accuracy

As presented by Nilsson and Nilsson (2021), the best-fitted machine learning model is

evaluated based on a series of performance metrics. It is much debated in the literature what

measures give the best evaluation. Hence, we chose to take several into account, coefficient

of determination (R2), Mean Absolute Percentage Error (MAPE), Mean Absolute Error

(MAE), Mean Squared Error (MSE), and Root Squared Error (RMSE). These measures

aim to give an overview of how well the models perform. Therefore, we can compare all

the models against each other.

We tested several machine learning models, including Linear Regression, Decision Tree

Regression, Random Forest, Support Vector Regression, Extra Trees, Lasso, Ridge,

Gaussian Process, and Gradient Boosting. We fitted the training set and tested it against

the test set for all of these models. We used the same dataset with "fuel consumption" as

a response variable to get a consistent evaluation when training all the different regression

models.

Table 6.7: Summary of performance metrics from the machine learning models

Model R2 (in %) MAPE (in %) MAE MSE RMSE

Linear Regression 60.08 11.13 2.49 9.71 3.12

Decision Tree Regression 36.26 13.73 2.97 15.50 3.94

Random Forest Regression 63.96 10.25 2.26 8.76 2.96

Support Vector Regression 63.08 10.58 2.32 8.98 3.00

Extra Trees Regression 62.70 10.37 2.29 9.07 3.01

Lasso Regression 23.14 16.17 3.63 18.69 4.32

Ridge Regression 60.08 11.33 2.49 9.71 3.12

Gaussian Process -40.96 35.77 4.3 34.27 5.85

Gradient Boosting 63.65 10.51 2.32 8.84 2.97

Table 6.7 shows that the model giving the best coefficient of determination is the Random

Forest Regression, followed by Gradient Boosting, Support Vector Regression, and Extra
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Trees. This measure tells us how much the different variables can explain the outcome.

In this case, the random forest regression has an explanatory power of 63.96 percent.

This tells us that the model can correctly predict approximately 64 percent of the time.

Furthermore, this percentage does not indicate that the model is overfitted, as we cannot

expect a perfect fit. Although this measure implies which model performs best, we will

examine the model’s errors.

The RMSE is one of the most commonly used performance metrics within machine learning.

This is also the error term the Nilsson and Nilsson’s (2021) used in their thesis. Table

5.7 also shows that the regression with the lowest RMSE is the Random Forest with only

2.96, slightly less than Gradient Boosting, which has a RMSE of 3.97. Furthermore, this

sufficiently matches the other performance metrics, as the model provides the lowest MSE,

MAE, and MAPE values. As a result, we conclude that the random forest regression is

the best-performing model for predicting fuel consumption based on our chosen variables.

However, many of the compared regression models perform almost equally well.

To better understand the Random Forest Regression model, Figure 6.10 shows an extract

of the whole forest. As we can see, the root node states that if the design is less than 0.5,

then we continue to the decedent node on the left, whereas if the design is above 0.5, we

will go to the right. This tells us that the first split is related to the ship design, which in

our sample consists of either the fuel-efficient Dolphin 38 Green or the baseline model,

which is Dolphin 64. Furthermore, we see that both alternative decedent nodes set out

statements concerning the speed over the ground. For each node, we get information about

the statement, squared error, the sample size, and the value equal to fuel consumption.

Although this is only an extract of a much bigger forest, it efficiently illustrates the model,

meaning we can see how the features and their importance navigate the observation

through the forest before it ends up with the predicted fuel consumption. For example,

Figure 6.10 indicates that a vessel of type Dolphin 38 Green with speed over ground

above 12.175 has a fuel consumption of 20.16. In contrast, a ship of the type Dolphin 64

with speed over ground above 11.675 has a predicted fuel consumption of 22.509. If we

had broken down the tree further, the outcome would have turned out slightly different.

However, the Random Forest Algorithm used this recursive binary partitioning method to

predict fuel consumption.
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Figure 6.10: Random Forest Model

The Random Forest model explains approximately 64 percent of the variance of the

response variable, and the average prediction error was about 10.25 percent, equating to

2.26 tons of fuel. Furthermore, the errors from the model are illustrated in Figure 6.11,

where we can see that the most significant fuel consumption was about 37 tons, whereas

the model predicted around 22 tons. Hence, the error was 14 tons. If we look at the plot

showing the predicted values vs. the residuals, there are clear indications that most errors

lie between 7 and -7 tons.

Figure 6.11: Plot of the errors
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6.2.2 Feature Importances

For machine learning models, it is evident to understand what factors have the most

influence on the model’s performance. To comprehend the different variables’ impact on

the prediction, we found the importance of the various features in our Random Forest

model. As seen in Figure 6.12, the "design" variable affects the prediction outcome the

most. This makes sense as the model accounts for two designs: the normal one, Dolphin

64, and the other, a more fuel-efficient model, known as Dolphin 38 Green. Considering

we are predicting fuel consumption, it seems fair that this is the single most important

feature.

Figure 6.12: Graph of the top six feature importances

Furthermore, the horizontal barplot shows that "speed_over_ground" constitutes the

second most important feature. This makes sense as the literature states that higher

speeds increase fuel consumption. Moreover, it supports our findings that speed heavily

influences consumption (Taskar and Andersen, 2020; Roh, 2013). In addition, Figure

6.12 states that the "wind_speed_kts" has approximately a 9 percent influence on the

prediction.
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6.3 Weather Routing Distributions - Fuel Consumption

6.3.1 Period December, January, and February

To compare the voyage’s fuel consumption on the different routes, we made histograms

of the utilization for each course for the divided periods. The following plots show how

many tons of fuel a vessel consumed on average per voyage day. Considering the fuel

consumption was predicted based on weather information, the difference can be explained

by these climate seasonality observations captured in the descriptive statistics.

Starting with the three months of DJF, Figure 6.13 displays that the third route, to

Mundra, consumes the least amount of fuel per day on its voyages. The plot was made

using the random forest regression model to find the distribution of total voyage fuel

consumption before dividing the result by the duration in days. A large portion of

the route’s fuel consumption is between 15 and 17 tons per day, making it a narrow

distribution, which indicates a concentrated mode. Route 1, crossing the Atlantic Ocean,

has a greater fluctuation in fuel consumption, displaying a left skewed distribution. This

means that the average is lower than both the median and the mode. This route has a

frequency, or a mode, of approximately 16 to 17 tons per day. Hence, resulting in the

highest predicted fuel consumption of the three routes.

Figure 6.13: Total fuel consumption distributions on average per voyage day for the
period DJF

The weather variables can explain the first route’s variations and lower concentration
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in fuel consumption. Considering the speed over ground in our thesis is fixed at 12.5

knots, the vessel has to use more fuel to uphold this speed. This is due to speed over

ground decreasing when there is increased resistance caused by wind, waves, and currents

(Almklov, 2022). As mentioned in the analysis, the North Atlantic Ocean for these months

is affected by high waves, which can be observed in the maps presenting the wave height.

These results align with the multiple extratropical storms occurring north in the ocean

during this period. In addition, the wind speed in this period will also contribute to vessel

resistance, as the mean wind speed ranges from 15 to 30 knots in large areas of the North

Atlantic Ocean.

As for the South Atlantic Ocean, the values displayed on the maps show a considerably

calmer sea, which corresponds to summer in the southern hemisphere. In this period,

most of the area has waves that average in height from 2 to 3 meters. The wind speed is

mostly between 10 to 15 knots.

The wind rose plots holding information on weather from locations in the route,

corresponding to the information extracted from the weather data. For example, if

the shipowner decides on route 1 in the months of DJF, the vessel may encounter wind

with a speed corresponding to a tropical depression, which could refer to route coordinates

north in the North Atlantic Ocean. Conversely, based on the maps and statistics, the

section of calm wind could reflect the summer season in the South Atlantic Ocean.

The second route from Cape of Good Hope to Samarinda to Pipavav has a high fuel

consumption per day, with a mode value of approximately 17 tons. In addition, the

distribution is also left skewed indicating the median of the distribution is at a lower value

than the mode. During the months of DJF, it is winter season in the Indian Ocean, and

the maps indicate that the ocean is calm at this time of the year. The further north in

the ocean, the lower the waves get. The maps demonstrate that the crossing from Cape

of Good Hope to Samarinda in Indonesia has a mean wave height of approximately 2.5

meters. This route faces lower waves on average than the first route to Rotterdam. The

wind is also weak for the period, with a mean below 15 knots.

Comparing the weather data to the wind rose plots for the route and the fuel consumption

distribution, we see that the descriptive statistics contribute in explaining the result. The

wind speed on the intended course has instances of values in the category 4 to 6 on the
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Beaufort scale, although most of the wind is calm.

For the last route, from Cape of Good Hope to Richards Bay to Mundra, the fuel

consumption is distributed with a mode at just above 16 tons on average per voyage day.

From South Africa to Mundra, the vessel travels near the coast of East Africa and into

the Arabic Sea. The maps of the mean wave height and wind speed in the Indian Ocean

show that the ocean is very calm in these areas during the southern hemisphere’s winter

season. As a result, the waves reach only 1 to 1.5 meters on average or lower for most of

the route. Furthermore, the wind speed averages between 5 and 15 knots, which illustrates

considerably calm weather.

The dominating wind speed observed in Figure 6.9 of the wind rose plot is in the category

4 to 6 on the Beaufort scale, which implies balanced weather. This contributes to

the explanation of why the average total voyage fuel consumption distribution has a

concentrated mode.

6.3.2 Period March, April, and May

Next are the daily total voyage fuel consumption distributions for MAM. Figure 6.14

shows how the third route, on average, consumes the least amount of fuel. Likewise, the

distributions for route 1 and route 3 are similar. However, route 1 is positioned slightly

more to the right on the x-axis, indicating higher fuel consumption distribution values.

Route 2, on the other hand, consumes more fuel on average.

Figure 6.14: Total fuel consumption distributions on average per voyage day for the
period MAM
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For the first route to Rotterdam, the vessel travels across the South Atlantic Ocean during

fall, MAM, and spring when crossing the North Atlantic Ocean because of the different

season’s definitions. The maps in Figure 6.1 and Figure 6.2 show that the North Atlantic

Ocean is calmer in MAM than during the months of DJF, with a mean wind speed of

between 10 to 20 knots. However, there are still considerably large waves further north,

reaching approximately 4 meters. Nevertheless, the waves have been slightly increased for

the South Atlantic Ocean. This is because waves are rising in height further north than

before.

As for the wind rose plots in Figure 6.7, we can see that the wind speed encountered on

the route has decreased considerably. This is because the months of MAM in the North

Atlantic are less inclined to strong winter storms (Frame et al., 2017). In addition, the

tropics are not inclined to have the ideal temperature for the creation of tropical storms

(Shepherd, 2017).

Compared to the months of DJF, the fuel consumption has decreased slightly per day for

a voyage. The distribution has become narrower and less right skewed than before. This

can be a result of less volatile weather during the MAM months.

As for the second route to Pipavav, more fuel is consumed for the voyages, split into

several days. The distribution has a left tail, indicating that the mean is slightly lower

than the mode value. Even though the distribution has a longer left tail, there is a higher

concentration of fuel consumption around the mode value.

Looking over the maps of the Indian Ocean, the number of higher waves has increased,

but the wind speed has reduced in the northern part of the ocean. The southern part of

the Indian Ocean has higher waves, gradually decreasing in height further north. The

voyage route crosses the Indian Ocean on the way to Samarinda, in an area where the

mean wave height is 3.5 meters. As for the wind speed, there are areas with wind reaching

a mean of 25 knots, although this is not common.

The wind rose plots of the wind speed and direction in Figure 6.8 reflect the resulting

fuel consumption distribution. For this route, the fuel consumption is higher compared

to the two other routes, which is reasonable, seeing as this route has a higher number of

observations of wind speed in the category 4 to 6.
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For the fuel consumption distribution, there are rarely voyages reaching above 18 tons per

day. In addition, the left tail has been considerably reduced, and there has become an

increased frequency of values around the mode. This might be because of higher waves

during MAM.

Route 3 to Mundra also has reduced weather compared to DJF. As seen on the maps,

only the first part of the route has higher waves, whereas most of the course, in the Arabic

Ocean, has a calm sea with, on average, approximately 1.5 meter high waves. The north

part also has a much lower wind speed in knots compared to the months of DJF. The

wind speed is, on average, 5 to 10 knots over the ocean near Mundra in India.

The wind rose plot in the period MAM can reflect these observations. Figure 6.9 shows

that most of the wind registered has a speed of 3 to 6 on the Beaufort scale, which

represent a calm ocean. Only a small percentage of the winds reach a speed, which equates

to a tropical depression.

6.3.3 Period June, July, and August

Figure 6.15 displays the voyage fuel consumption distributions for the period JJA in tons

on average per voyage day. For this period, route 1 has the lowest fuel consumption

distribution values with a mode at approximately 16.5 tons. Route 3 has increased slightly

from the previous periods and has a wider distribution, meaning the values are less

concentrated. Hence, the fuel consumption varies in a greater degree compared to the

other routes. The second route currently has the highest fuel consumption mode value at

17.5 tons on average.
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Figure 6.15: Total fuel consumption distributions on average per voyage day for the
period JJA

Weather data can back the fuel consumption results of route 1. We can see that the waves

have been reduced in height in the North Atlantic, with the map in Figure 6.1 showing

most waves being no higher than 2.5 meters. The South Atlantic, on the other hand,

has a higher mean wave height. Here, the number of high waves has stretched towards

the north, leaving the vessel to travel through areas with higher average wave heights.

In Figure 6.3, the map shows waves reaching an average of 4.5 meters up to the tip of

Africa, and large amounts are within the 2.5 to 3 meters range. The North Atlantic has

an average wind speed of 15 knots, with a good proportion of 5 to 10 knots. The South

Atlantic has higher wind speed, but the areas concerning the routes have a mean of 15 to

20 knots.

The maps and the fuel consumption distribution can be proven further with the wind rose

plots of the wave height and direction. For this period, there are a lot of waves reaching

only up to 2 meters in height. There are, however, instances of waves from 3 to 4 meters.

The JJA period is calmer compared to DJF, however, quite similar to the MAM distribution

and observations. As mentioned in the Section 3, it is not the season for extratropical

storms in the North Atlantic, and the hurricane season has officially started. Nonetheless,

most of these will happen in SON. The wind rose plots show a wave height reduction that

remarkably reduces from DJF to MAM but also further to JJA. The period does have

extratropical storms in the southern hemisphere, however, since this happens at a higher
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latitude, the effects will diminish by the time it reaches the route coordinates.

Route 2, however, has a slightly higher fuel consumption with a mode of around 17.5 tons.

The tail is long on the left side, but more voyages reach over 18 tons of consumption per

day on average. This increase could be due to the monsoon season.

As we can see from Figure 6.5 and Figure 6.6 in the descriptive statistics, there are higher

waves and wind speeds. The southern part of the ocean has the highest waves, which

aligns with the data of the South Atlantic Ocean at this time due to the extratropical

storms. Waves can reach an average of 5 meters, and large parts of the route will encounter

areas with an average wave height of 3.5 to 4 meters. The wind speed has also increased

in strength, mostly ranging from 15 to 20 knots. Near Samarinda, however, the ocean is

calmer.

The impact of the monsoon season is also recognizable in the wind rose plot in Figure 6.8.

Most wind speed encountered during route 2 can be placed within the category 4 and 6.

However, there are also more wind reaching the speed of a tropical depression compared

the first route, which could explain the more significant fuel consumption distribution.

Comparing the distributions, JJA now has higher waves, especially waves reaching 4

meters and above. Based on this, a voyage during this period would entail added extreme

weather, possibly leading to higher fuel consumption.

For the last route to Mundra, the voyage fuel consumption distribution has also increased

compared to the previous periods. The weather in JJA has resulted in a wider distribution

for the route, and it no longer has the lowest consumption based on three case study

routes. In addition, for this route, voyages reach a fuel consumption of approximately 18

tons, which rarely occurs.

The increase in fuel consumption shares the same explanation as route 2. Even though

the area from Richards Bay to Mundra is relatively calm, JJA is more prone to higher

waves. The wind speed has also increased, now with a mean value of 20 to 25 knots.

According to the wind rose plots, the wind speed is mainly within the category 5 and 6,

and in addition, has the most observations reaching the category of a tropical depression.

The wind rose plots reveal a rougher sea for route 3 compared to route 2.

The observations of higher wind speed has increased significantly compared to the other
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periods. The fuel consumption and the analyzed weather data show that the monsoon

season is predisposed to the worst weather. This is especially evident due to the wide

distribution of fuel consumption, indicating large variations for the fuel consumed during

this period, resulting in more extreme values.

6.3.4 Period September, October, and November

Figure 6.16 shows the last period of the year, SON. These months are a part of the

hurricane season in the North Atlantic Ocean (Kossin, 2008). From the graph, we see that

it is route 2 that has the highest distribution values for fuel consumption on average per

day, and route 3 requires the lowest amount of fuel. The first and the third routes are left

skewed and have wide distributions. Route 2, though, has a distribution slightly more

concentrated around the mode of just above 17 tons per day compared to the months

JJA.

Figure 6.16: Total fuel consumption distributions on average per voyage day for the
period SON

The first route, to Rotterdam, has a mode value at around 17 tons per day. This indicates

that the fuel consumption is slightly reduced compared to DJF, with a wide distribution.

From the part of the descriptive statistics, the map of the North Atlantic Ocean shows

that the waves are reemerging. In addition, the wind speed is, on average, between 10 and

15 meters high over most of the North Atlantic, except for the northern part, which has a

higher wind speed. The South Atlantic Ocean has spring at this time of the year, and,
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according to the maps, the waves are still high with an average height of approximately 3

meters. The wind speed is also relatively strong, usually ranging from 10 to 20 knots.

The wind rose plot shows an increase in the wind speed for this period compared to JJA.

Again, more wind are coming from the northwest and west, at the speed defined as a

tropical depression. However, we have seen that the intensity will increase during the next

period.

For route 2, the fuel consumption distribution has decreased compared to JJA. The mode

value is slightly closer to 17 tons than the previous, and the distribution is narrower,

meaning more observations is centered around the mode. This is a result of a reduced

amount of turbulent weather.

From the descriptive statistics maps, the wave height has decreased across the Indian

Ocean. This is because the periods for extratropical storms have passed, resulting in

waves having a mean height of 3 to 3.5 meters for parts of the voyage route. In addition,

wind speed has decreased in intensity. The wind rose plot in Figure 6.8 shows there have

been observations of wind speed above category 6, though these are few. The wind speed

met on the route is reduced compared to JJA.

The route to Mundra is the option that consumes the least fuel per voyage, with a mode

at approximately 16.5 tons and a mean value lower than this. The distribution has a

long left tail, although it is still narrower than the distribution from JJA. The descriptive

statistics showing calmer weather helps explain this change in distribution.

The Indian Ocean is calmer during SON, and by looking at the map, we can see that the

average wave height is low in the area for route 3. In addition, wind speed is between 10

to 15 knots on average for most parts of the route. This can be observed in the wind rose

plot. While the average wave height is low, there are still registered waves over 5 meters,

which could result from September originally being defined as part of the monsoon season.

Comparing the descriptive statistics, we can see that JJA is the period with the most

volatile weather. This is reflected in the fuel consumption distribution, however, the

period SON also shows several high waves compared to the winter and summer.

In Appendix C, the figures display the different fuel consumption distributions compared

by routes, using total consumption. In addition, figures comparing the routes’ fuel
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consumption with periods are also included. These plots provide an average total fuel

consumption of 600 tons for route 1 and route 2. Route 3, on the other hand, has an

average of 300 tons. This is a result of the route to Mundra having a significantly shorter

voyage.

6.4 Time Charter Equivalent Distributions

To analyze which route is the best option for a shipowner to accept for a vessel located in

the Cape of Good Hope, it is beneficial to calculate the cumulative distribution of the TCE.

This distribution is a decision tool for shipowners, where it is easy to see which option

will give the best profit (Güngör and Barlas, 2022). We can compare the three routes

for the different periods and case studies using these distributions. The cumulative plots

show the likelihood of a shipowner gaining a certain value of TCE by what percentage the

number is equal to on the y-axis. Based on this, we will choose the distribution leaning

furthest towards the right as the best choice, representing a greater chance of gaining a

higher profit. Following, we are able to finally decide which route is the best option for a

shipowner.

In addition to these plots, Table D1 in the Appendix shows summary statistics values for

each period and route for the first scenario of a low bunker price. In this table, we have

included information about the mean and standard deviation of the distributions as well

as the minimum and maximum values.

When predicting fuel consumption, we did not consider the effect of cargo weight. This

is because the thesis contributes to the explanation of how fuel consumption is affected

by weather variables, and adding this extra variable could have influenced the results.

On the other hand, not including cargo weight as an input variable when predicting fuel

consumption results in an incorrect TCE comparison. Therefore, even though route 3

regularly takes 60,000 tons of cargo, we have chosen to work with a fixed load of 50,000

tons (Clarksons Shipping Intelligence Network, 2022). Appendix D, Figure D.4 show the

resulting TCE distribution for route 3 for all periods. In addition, Figure D.5 to Figure

D.8 display the cumulative plots comparing the three case study routes when using 60,000

tons of cargo for route 3.
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6.4.1 Period December, January, and February

The time charter equivalent distributions are derived from the resulting fuel consumption

distributions, and we analyzed the route options for each period and each scenario. Figure

6.17 shows the results for period DJF where route 3 has the distribution with the highest

TCE values for scenario 1. This result is reflected in Table D.1, listing the mean value for

this route at 19,929.50$. Route 1 is the second best option for the low bunker scenario, as

seen in the figure, with the second route achieving the lowest TCE. Every graph in this

scenario is slightly right skewed, indicating that the highest frequency has a lower value

than the mean. This is a result of missing days for some voyages, corresponding with the

low fuel consumption on average per day for some of the routes in this period.
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Figure 6.17: TCE distributions for the months December, January, and February, for
all three scenarios

For routes 1 and 2, the TCE distributions are different for the second scenario with

an average fuel bunker price. Route 1 has a reduced value at the point of the highest

frequency, and the third route is even more profitable. Because of a higher bunker price,
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the first and second routes have decreased TCE values. This decline is also a result of a

corresponding lower freight rate for route 1 along with a barely increasing rate for route

2. For the third route, however, the scenario had a more significant increase in freight

rate, resulting in higher TCE. Accordingly, scenario 3, with high bunker prices, leads to

an increasing distribution of TCE values for the first and second routes, whereas route 3

has slightly decreased.
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Figure 6.18: Cumulative TCE distributions for the months December, January, and
February, for all three scenarios

The cumulative plot in Figure 6.18 shows that the third route is the best option for the

shipowner. This is the distribution furthest to the right, meaning it has a greater chance

of earning higher profits.
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From what we can gather from the results, fuel consumption shows that weather affects the

consumption significantly for route 1 to Rotterdam because of the crossing of the North

Atlantic Ocean during DJF. Therefore, the fuel consumption distribution for this route is

wider than for route 2 and route 3. Comparing the cumulative distributions, the route

to Mundra has approximately 80 percent chance of earning a TCE of less than 20,000$,

though never less than 19,257.80$, which is the minimum value in Table D1. On the other

hand, for route 1, 70 percent of the time, TCE will be less than 10,000$, with the highest

possible value of 10,786.50$. As the route to Mundra has the lowest fuel consumption on

average and is more profitable, with the best cumulative TCE distribution, it is the best

route option during DJF.

6.4.2 Period March, April, and May

Figure 6.19 displays the TCE distribution results for period MAM. Comparing each of

the scenarios, route 3 is still the most profitable choice when the bunker price is low.

For this scenario, the mean is 19,951.30$, slightly higher than the previous, although the

distribution is still right skewed. This result is higher than the distributions for route 1

and 2, which remains approximately the same compared to DJF. The only difference is

narrower distributions, which could result from less volatile weather. As seen in Table D1,

the minimum TCE value attainable for route 2 is 3,931.97$, with a maximum of 4,853.84$.

Along with the plot comparing the routes for scenario 1, we see that the least profitable

option is route 2 due to considerably lower values.
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Figure 6.19: TCE distributions for the months March, April, and May, for all three
scenarios

For the second scenario, the mean bunker price, Figure 6.19, shows decreased TCE values

for the distribution for route 1, with approximately the same values on the x-axis as route

2. These results could be due to the significantly reduced freight rate for route 1 during
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the second scenario, which greatly reduces the TCE. On the other hand, route 3 has a

considerable increase in freight rate, making the route more profitable even though the

bunker prices have increased. Scenario 3 shows increased TCE values for the distribution

of route 1 compared to the mean bunker price.

Figure 6.20: Cumulative TCE distributions for the months March, April, and May, for
all three scenarios
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Considering the weather was calmer during MAM, we have a greater likelihood of gaining

a profit around the mean value because of the narrower distributions. The cumulative

distributions in Figure 6.20 show the three different scenarios. The distributions are

somewhat similar, with the third route being the best option for all scenarios in MAM.

The second-best option is the first route, even in the second scenario. As seen in the plot,

route 1 crosses the cumulative distribution of route 2, indicating it has broader tails. It is

also positioned slightly further to the right and, as a result, has a better probability of

earning higher TCE than route 2.

6.4.3 Period June, July, and August

For the period JJA, Figure 6.21 show that the TCE values in the distribution for route

3 have decreased due to the monsoon season causing more weather events in the Indian

Ocean. The mean value for this route is, for this period, 19,780.20$. In addition, for

scenario 1, the distribution for route 1 has become narrower, now with a mean of 9,735.91$

and a decreased standard deviation at the value of 125.62$.

For the second scenario, route 1 gains higher distribution values compared to route 2, even

though the freight rate has significantly decreased. This supports the fact that JJA is the

monsoon season in the Indian Ocean, creating worse weather for the route to Samarinda

and Pipavav, equating to the summer season in the North Atlantic Ocean. As previously

concluded, the North Atlantic had calmer weather during this period. For the third

scenario, route 3 has a wider distribution and has slightly decreased values compared to

the second scenario. The most frequent observed value is now just above 25,000$.
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Figure 6.21: TCE distributions for the months June, July, and August, for all three
scenarios

The cumulative distributions displayed in Figure 6.22 shows that route 3 to Mundra is

still the best option, supporting the resulting TCE distributions. For the first scenario,

the third route has over 90% chance of earning below 20,000$, however, it is not likely
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to make less than the minimum value of 19,313.7$, which is considerably more than the

other routes. For scenario 2, the first route has a higher probability of earning a higher

TCE compared to route 2. Nevertheless, even though the first route is positioned more to

the right, the cumulative distribution of route 2 is slightly more bent, showing route 2

has the opportunity of earning more than route 1 due to a longer right tail. Even though

the opportunity of earning a higher TCE is present, there is still a considerably higher

risk of choosing this route than the route crossing the Atlantic Ocean. To conclude, the

third route is the best option for a shipowner to choose during JJA, regardless of the

different scenarios, despite the increased likelihood of experiencing harsh weather during

this period.
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Figure 6.22: Cumulative TCE distributions for the months June, July, and August, for
all three scenarios

6.4.4 Period September, October, and November

In Figure 6.23, Route 3 has again the distribution furthest to the right with the highest

TCE values. The mean value for this distribution has increased to a value of 19,887.40$
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compared to JJA due to the monsoon season passing. The figure also displays a wider

distribution for route 1, which can be an effect of the seasonal climate for the period. For

this route in SON, the mean value earned is 9,698.56$ per day as observed on the plot in

Figure 6.24, resulting in a higher mean value than the most frequent TCE. The distribution

for route 2, however, is still quite narrow. For the second scenario, the distribution for

route 1 has again decreased values. For the third scenario, of the high bunker prices, every

route has increased distribution values due to the freight rates gathered at the time of the

bunker price scenario.
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Figure 6.23: TCE distributions for the months September, October, and November, for
all three scenarios

The cumulative plots in Figure 6.24 show that route 3 is the most profitable choice in

the period of SON, with a placement furthest to the right of the x-axis for every scenario.

Route 1, on the other hand, has a high probability of earning less than 10,000$ per day.
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Scenario 2 shows that route 2 has a higher probability of earning more compared to route 1,

seeing as the distribution for the route to Pipavav is placed more to the right. This shows

that route 1 has a wider distribution, with more chance of earning less, however, there is

still a possibility of earning more than route 2, though this chance is slim. This result

could be due to the hurricane season in the North Atlantic Ocean as well as extratropical

storms starting to occur later in this period. The third scenario of a high bunker price

shows that there is now a high probability of a TCE higher than 10,000$ when choosing

route 1, as well as a high probability of gaining a TCE of more than 25,000$ when choosing

the third route. To conclude, the route from the Cape of Good Hope to Richards Bay to

Mundra is the preferred route for all scenarios in this period.
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Figure 6.24: Cumulative TCE distributions for the months September, October, and
November, for all three scenarios
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7 Final Remarks

7.1 Conclusion

Our thesis presents three contributions to the field of shipping, where we generate TCE

and an assessment of climate risk. The first contribution is a method for generating

distributions of TCEs using climate information as input, providing a more comprehensive

way to assess risk than the deterministic approach using a fixed weather margin. The

second contribution is a comparison of different routes for a Supramax vessel trading

to key ports based on climate seasonality. Finally, the third and last contribution is a

business-oriented analysis of the case of a vessel open for cargo at the Cape of Good Hope.

To understand how weather conditions, such as strong winds and waves, impact fuel

consumption and TCE for vessels at sea, we retrieved wind, waves, and swell data from

the Copernicus Marine Service (2022). In addition, to understand the seasonal variations

in fuel consumption for the different routes, we used machine learning to predict the

best-fitting model, which was the Random Forest.

Moreover, we made distributions to compare the fuel consumption of different routes for

four periods of the year. Furthermore, the distributions show that the routes with the

lowest fuel consumption per day are the ones encountering the lowest wave height and

wind speeds, as these weather conditions contribute to vessel resistance and therefore

increase fuel consumption.

As a result, this research analyzes the best route options for a shipowner based on the

Time Charter Equivalent distributions. The distributions are further used to compare

the likelihood of higher TCE. The optimal route is the one going from the Cape of Good

Hope to Richards Bay to Mundra due to the lowest fuel consumption and the overall

best weather conditions. The results also show that the weather significantly affects fuel

consumption and TCE. Hence, taking these factors into account can help shipowners

make more profitable decisions.

Based on the findings of this research, we recommend using the method proposed in

this thesis for generating distributions of TCEs where climate information is utilized as

input to assess better weather-related risks and their effects on fuel consumption and
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TCE. Furthermore, it should be considered to use machine learning models, such as the

Random Forest, to predict fuel consumption and optimize route planning based on weather

conditions. Moreover, seasonal weather variations and their effects on fuel consumption

in the decision-making process should be evaluated. Lastly, we recommend using TCE

distributions to compare the likelihood of increasing profits for different routes and choose

the one with the lowest fuel consumption and the best weather conditions.

By following these recommendations, shipowners can improve their ability to forecast and

manage weather-related risks and make more profitable decisions.

7.2 Limitations

After interpolating and connecting the weather data to the routes, the compiled data had

missing rows for the last part of December, every two years. Instead of having data for

each day, these voyages ended on January 15th, generating an incorrect number of days

on the trips. This causes a limitation to the total fuel consumption in December, January,

and February. In Appendix C, Figures C.1 to Figure C3, show the graph having a long

left tail, indicating an unnaturally low total fuel consumption average per voyage day. By

making every voyage last an equal number of days, the result of fuel consumption and

TCE would become more accurate.

Another limitation of our thesis is that we have based the three routes on the shortest

distance between the ports. These routes might not always be the best option. For

instance, there could be shallow waters, and sometimes a vessel needs to choose a longer

route to avoid encountering dangerous weather conditions. We have also yet to consider

the possibility that the ship needs to spend more days on a voyage due to bad weather,

which could increase expenses significantly. For instance, as mentioned in the analysis of

the observed weather statistics, waves have been recorded reaching up to 13 to 17 meters,

and wind speeds have been measured to equal a tropical storm or hurricane. These are

examples of extreme weather events that could change the planned voyage for a vessel.



68 7.3 Further Research

7.3 Further Research

For further research, it would be interesting to use less fixed variables as this might

debilitate the generalizability of the findings, as the result might not be applicable for

other vessels, different cargo weights, or different speeds over ground. Also, in regards to

the best route, based on our findings, it might be different if other aspects were evaluated

rather than solely basing the entire analysis on costs. This is because it may exclude

important factors, such as safety and environmental impacts, and such assessments could

further improve the validity of the conclusion.

Moreover, the limitations described above, highlight important considerations for further

research that could positively affect the accuracy and robustness of the findings. The

missing data for certain routes during DJF every two years could introduce a bias in the

results, as it may not accurately reflect the true fuel- and TCE distributions. Additionally,

the assumption that the shortest distance between ports is always the best route may not

always hold true, as there may be other factors, such as shallow waters and dangerous

weather conditions, that could impact the optimal route. Finally, the possibility that

extreme weather events could extend the length of a voyage and increase expenses has

not been taken into account in the analysis, which could affect the conclusions.
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Appendices

A Numbers for TCE Calculation Input

Table A.1: Key information about the routes

From port To port Laden/ballast Fuel type Distance (in NM)5 Days (12.5 knots)
Good Hope Houston (out of ECA) Ballast HSFO 7312 24.37
Good Hope Houston (in of ECA) Ballast ULSFO 194 0.65
Houston Rotterdam (in USA ECA) Laden ULSFO 194 0.65
Houston Rotterdam (out USA ECA) Laden HSFO 4384 14.61
Houston Rotterdam (in Europe ECA) Laden ULSFO 536 1.79
Good Hope Samarinda Ballast HSFO 5691 18.97
Samarinda Pipavav Laden HSFO 3694 12.31
Good Hope Richards Bay Ballast HSFO 851 2.84
Richards Bay Mundra Laden HSFO 3808 12.69

Table A.2: Information about port costs

Port Activity Port costs in $ 6

Houston Loading 93 471
Rotterdam Discharging 61 807
Samarinda Loading 13 309
Pipavav Discharging 56 289
Richards Bay Loading 23 508
Mundra Discharging 66 658

5Distances retrieved from Dataloy (2022)
6Overview of port costs obtained from Signal Ocean Group (2022)
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B Descriptive Statistics

Figure B.1: Mean swell height in the North Atlantic Ocean

Table B.1: Summary statistics of the North Atlantic Ocean - Swell height

Period Mean Standard Deviation Max Min 95% Quantile

DJF 1.91 1.18 13.73 0.00 4.24

MAM 1.52 0.89 10.65 0.00 3.25

JJA 1.10 0.54 11.61 0.00 2.03

SON 1.48 0.91 11.75 0.00 3.28
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Figure B.2: Mean swell height in the South Atlantic Ocean

Table B.2: Summary statistics of the South Atlantic Ocean - Swell height

Period Mean Standard Deviation Max Min 95% Quantile

DJF 1.63 0.85 10.96 0.00 3.31

MAM 1.85 0.95 11.47 0.00 3.73

JJA 2.06 1.05 11.74 0.00 4.15

SON 1.83 0.92 11.83 0.00 3.66
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Figure B.3: Mean swell height in the Indian Ocean

Table B.3: Summary statistics of the Indian Ocean - Swell height

Period Mean Standard Deviation Max Min 95% Quantile

DJF 1.36 0.74 10.70 0.00 2.73

MAM 1.53 0.93 10.67 0.00 3.27

JJA 1.96 1.06 11.83 0.00 3.96

SON 1.54 0.88 9.61 0.00 3.22
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C Fuel Consumption

Figure C.1: Total voyage fuel consumption distributions for all periods in Route 1

Figure C.2: Total voyage fuel consumption distributions for all periods in Route 2

Figure C.3: Total voyage fuel consumption distributions for all periods in Route 3
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Figure C.4: Total voyage fuel consumption distributions for each route in period DJF

Figure C.5: Total voyage fuel consumption distributions for each route in period MAM

Figure C.6: Total voyage fuel consumption distributions for each route in period JJA
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Figure C.7: Total voyage fuel consumption distributions for each route in period SON



D Time Charter Equivalent 81

D Time Charter Equivalent

Table D.1: Summary statistics of TCE values for scenario 1 for each period

Period Route Mean Standard Deviation Min Max

DJF Route 1 9698.56 241.48 9188.69 10786.50

DJF Route 2 4575.69 556.05 4126.80 7463.43

DJF Route 3 19929.50 187.41 19257.80 21005.60

MAM Route 1 9745.52 220.31 9320.68 10984.60

MAM Route 2 4315.06 122.75 3931.97 4853.84

MAM Route 3 19951.30 236.40 19491.00 21613.30

JJA Route 1 9735.91 125.62 9435.40 10316.70

JJA Route 2 4214.22 144.97 3808.36 5126.55

JJA Route 3 19780.20 205.23 19313.7 20978.40

SON Route 1 9698.56 241.48 9188.69 10786.50

SON Route 2 4328.47 125.54 4036.09 5062.01

SON Route 3 19887.40 200.43 19368.00 21053.80
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Figure D.1: Time Charter Equivalent distributions for route 1, comparing the four
periods for all three scenarios
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Figure D.2: Time Charter Equivalent distributions for route 2, comparing the four
periods for all three scenarios
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Figure D.3: Time Charter Equivalent distributions for route 3, comparing the four
periods for all three scenarios, based on the input value 50,000 tons cargo weight
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Figure D.4: Time Charter Equivalent distributions for route 3, comparing the four
periods for all three scenarios, based on the input value 60,000 tons cargo weight
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Figure D.5: Cumulative Time Charter Equivalent distributions for the months December,
January, and February, for all three scenarios, compared based on the input value 60,000
tons cargo weight for route 3
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Figure D.6: Cumulative Time Charter Equivalent distributions for the months March,
April, and May, for all three scenarios, compared based on the input value 60,000 tons
cargo weight for route 3
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Figure D.7: Cumulative Time Charter Equivalent distributions for the months June,
July, and August, for all three scenarios, compared based on the input value 60,000 tons
cargo weight for route 3
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Figure D.8: Cumulative Time Charter Equivalent distributions for the months September,
October, and November, for all three scenarios, compared based on the input value 60,000
tons cargo weight for route 3


